Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemical reactions in artificial cell-scale systems show surprising diversity: The thousand-droplets test

Droplets with a diameter of only a few micrometers act as the reaction vessels for a complex oscillating reaction - Photo: Maximilian Weitz / TUM
Droplets with a diameter of only a few micrometers act as the reaction vessels for a complex oscillating reaction - Photo: Maximilian Weitz / TUM

Abstract:
In the future, an entire chemistry lab could be accommodated in a tiny little droplet. While simple reactions already work in these simplest models of an artificial cell now a group of scientists of the Cluster of Excellence Nanosystems Initiative Munich (NIM) have established and investigated for the first time a complex biochemical system. They discovered a surprising diversity.

Chemical reactions in artificial cell-scale systems show surprising diversity: The thousand-droplets test

Munich, Germany | Posted on February 18th, 2014

An almost infinite number of complex and interlinked reactions take place in a biological cell. In order to be able to better investigate these networks, scientists led by Professor Friedrich Simmel, Chair of Systems Biophysics and Nano Biophysics at the Technische Universitaet Muenchen (TUM) try to replicate them with the necessary components in a kind of artificial cell. This is also motivated by the thought of one day using such single-cell systems for example as "nanofactories" for the production of complex organic substances or biomaterials.

All such experiments have so far predominantly worked with very simple reactions, however. NIM Professor Friedrich Simmel and his team have now for the first time managed to let a more complex biochemical reaction take place in tiny droplets of only a few micrometers in size. Together with co-authors from the University of California Riverside and the California Institute of Technology in Pasadena, USA, the scientists are presenting their findings in the current edition of Nature Chemistry.

Shaking once - investigating thousands of times

The experiment is conducted by putting an aqueous reaction solution into oil and shaking the mixture vigorously. The result is an emulsion consisting of thousands of droplets. Employing only a tiny amount of material, the scientists have thus found a cost-efficient and quick way of setting up an extremely large number of experiments simultaneously.

As a test system, the researchers chose a so-called biochemical oscillator. This involves several reactions with DNA and RNA, which take place repetitively one after the other. Their rhythm becomes visible because in one step two DNA strands bind to each other in such a way that a fluorescent dye shines. This regular blinking is then recorded with special cameras.

Small droplets - huge differences

In the first instance, Friedrich Simmel and his colleagues intended to investigate the principal behavior of a complex reaction system if scaled down to the size of a cell. In addition, they specifically wondered if all droplet systems displayed an identical behavior and what factors would cause possible differences.

Their experiments showed that the oscillations in the individual droplets differed strongly, that is to say, much stronger than might have been expected from a simple statistical model. It was above all evident that small drops display stronger variations than large ones. "It is indeed surprising that we could witness a similar variability and individuality in a comparatively simple chemical system as is known from biological cells", explains Friedrich Simmel the results.

Thus, it is currently not possible to realize systems which are absolutely identical. This de facto means that researchers have to either search for ways to correct these variations or factor them in from the start. On the other hand, the numerous slightly differing systems could also be used specifically to pick out the one desired, optimally running set-up from thousands of systems.

Investigating complex biosynthetic systems in artificial cells opens up many other questions, as well. In a next step, Friedrich Simmel plans to address the underlying theoretical models: "The highly parallel recording of the emulsion droplets enabled us to acquire plenty of interesting data. Our goal is to use these data to review and improve the theoretical models of biochemical reaction networks at small molecule numbers."

The research was funded by the National Science Foundation, the European Commission, the German Research Foundation's Cluster of Excellence Nanosystems Initiative Munich (NIM) and the Bavarian Elite Network.

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Prof. Dr. Friedrich C. Simmel
Chair of Bioelectronics Systems Biophysics and Bionanotechnology
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11612

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video:

Publication:

Related News Press

Videos/Movies

Programmable materials find strength in molecular repetition May 23rd, 2016

News and information

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Synthetic Biology

The magic of microbes: ONR engineers innovative research in synthetic biology February 19th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

DNA 'building blocks' pave the way for improved drug delivery January 12th, 2016

Imitating synapses of the human brain could lead to smarter electronics November 15th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Discoveries

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Announcements

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Nanobiotechnology

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Research partnerships

Mille-feuille-filter removes viruses from water May 19th, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Physicists measure van der Waals forces of individual atoms for the first time May 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic