Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoelectronics key to advances in renewable energy

Abstract:
Nanoscale technology looks promising as a major contributor to advancements needed to fulfill the potential of emerging sources of clean, renewable energy.

Nanoelectronics key to advances in renewable energy

Tempe, AZ | Posted on February 17th, 2014

Progress in the comparatively new area of nanoelectronics in particular could be the basis for new manufacturing processes and devices to make renewable energy systems and technologies more efficient and cost-effective.

Stephen Goodnick will focus on what nanoelectronics advances could do to help push the performance of solar energy systems to the next level in his talk at the 2014 annual meeting of the American Association for the Advancement of Science (AAAS) Feb. 13-17 in Chicago.

His presentation will lead off a session on Feb. 16, from 1:30 to 4:30 p.m., titled "Nanoelectronics for Renewable Energy: How Nanoscale Innovations Address Global Needs."

Goodnick is a professor in the School of Electrical, Computer and Energy Engineering, one of Arizona State University's Ira A. Fulton Schools of Engineering.

Titled "Pathways to Next-Generation Photovoltaics," Goodnick's presentation will look at how innovations driven by nanoelectronics research can enable photovoltaic technology to significantly improve our ability to convert sunlight and heat into electric power.

He'll specifically delve into how new types of nanostructure-based devices can make it possible to produce photovoltaic solar cells that achieve better energy-conversion efficiency.

Goodnick explains that the key is in the different characteristics, properties and behavior of materials at the nanoscale.

A nanometer is one-billionth of a meter (one meter is a little more the 39 inches long). About 100,000 nanometers amount to the same thickness as a typical sheet of paper.

At that tiny scale, silicon and other materials that are used to make solar cells can perform in ways that boost the effectiveness of devices for producing energy, Goodnick says.

"With the use of nanoparticles, made into nanostructures, we could, for instance, improve optical collection, enabling systems to trap more light for conversion into electrical power," he says.

"Using nanomaterials, we could make solar cells even thinner but still more efficient, and we could increase the capacity of energy-storage devices," he says.

Such progress will hinge on the success of science and engineering research in overcoming current high production costs and some technical challenges. But Goodnick says he's confident nanotechnology advances "are going to be big factors in the future of energy."

Goodnick's talk is part of an AAAS conference session that will also feature additional presentations on aspects of nanoelectronics and renewable energy by four other scientists and engineers who will join Goodnick in a research collaboration beginning in July at the Institute for Advanced Study at the Technical University Munich in Germany.

Goodnick has been awarded the German university's Hans Fischer Senior Fellowship, which will enable him to spend six months conducting research at the institute this year. The fellowship award is given to engineers and scientists doing innovative work in areas of interest to the institute.

####

For more information, please click here

Contacts:
Joe Kullman

480-965-8122

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanoelectronics

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Events/Classes

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

Nanotech Security to Present at the Optical Document Security Conference February 11, 2016 February 4th, 2016

New research uses nanotechnology to prevent preterm birth: March of Dimes honors abstract on prematurity at SMFM Annual Meeting February 2nd, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Research partnerships

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic