Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Movies of graphene nanopore opening

Figure: Nanopores in graphene, catalyzed by single silicon atoms and recorded by HTEM.

Source: http://www.graphenea.com/blogs/graphene-news/12040077-movies-of-graphene-nanopore-opening#ixzz2tPrSBi3U
Figure: Nanopores in graphene, catalyzed by single silicon atoms and recorded by HTEM. Source: http://www.graphenea.com/blogs/graphene-news/12040077-movies-of-graphene-nanopore-opening#ixzz2tPrSBi3U

Abstract:
Fabricating functional nano-devices is an ultimate goal of nanotechnology. Atomic-scale modification and sculpting of materials can enable nano-machines with wide-varying application potential in biological (medical) and chemical (trace sensing) uses. In our most recent publication, together with Harvard University, the Lawrence Berkeley National Laboratory and FEI corporation, we demonstrate precise modification of graphene at the atomic scale.

Movies of graphene nanopore opening

San Sebastian, Spain | Posted on February 15th, 2014

In our paper "Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene", published in NanoLetters, we report the direct observation of single silicon atoms catalyzing a reaction on a graphene surface. The reaction removes carbon atoms in a controlled fashion, allowing for precise sculpting of nanopores in graphene. Nanopores in graphene hold great technological and scientific potential, and are already being considered for several uses, such as water filtration and DNA sequencing.

Known to humans for centuries, catalysts play an enabling role in many chemical processes that are important to the modern society. Recent advances in nanotechnology introduced nanocatalysts that enable the creation of novel nanostructures, such as carbon nanotubes and semiconductor nanowires. The characteristics of the resulting structures can be tuned by the structures of the corresponding nanocatalysts. For example, in the growth of semiconductor nanowires from metal nanoparticles, the diameter of the resultant nanowire is determined by the size of the catalytic nanoparticles.

Catalysis typically involves complex atomic-scale events that are hard to record, either because they are too fast or too small for the instrumentation used for the recording. We overcome these challenges by using high-resolution transmission electron microscopy (HRTEM) to record individual silicon atoms as they catalyze the graphene chiseling reaction. The products of the chiseling process are atomic-scale features including graphene pores and clean edges.

The silicon atoms are naturally present impurities in the HRTEM chamber. The atoms freely drift along the graphene surface, until they come across an occasional atomic-scale defect in the sheet. The silicon atom then replaces a carbon atom in the chickenwire structure of graphene. A scientist starts the chiseling reaction by directing a focused electron beam to the defect site. The width of the pore starts from only a few angstroms, gradually increasing with the presence of silicon adatoms and under continuous electron irradiation. The pore size is controlled by stopping the irradiation when the desired size has been reached, as seen in the figure above.

These molecular-sized pores are excellent candidates for molecular detection applications, such as rapid DNA sequencing, because they can be tuned to match the size of a single DNA molecule (~10 Angstroms) for the sensitivity that is needed for single base recognition.

Apart from demonstrating the proof of principle, we found some interesting physics of the process, including the dynamics, stability and selectivity of the single-atom chiseling process. Our findings show that there are likely other pairs of atoms in nature, aside from silicon-graphene, that possess atomic chiseling ability.

The graphene used in this research is our standard high-quality CVD graphene, transferred onto a TEM grid.

####

About Graphenea
We are a leading graphene company that manufacture, produce and supply graphene for industrial and research needs. We have developed a synthesis and transfer process to obtain high uniformity monolayer graphene films on any substrate.

For more information, please click here

Contacts:
General Enquiries

Copyright © Graphenea

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper “Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene”, published in NanoLetters:

Download video:

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Physics

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Graphene

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Graphene Structure Studied in Iran by Novel Method August 25th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Water

New Nanosorbent Helps Elimination of Colorants from Textile Wastewater August 25th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

PerkinElmer to Display Innovative Detection and Informatics Offerings at ACS National Meeting & Exposition Detection, Data Visualization and Analytics for Chemistry Professionals August 8th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE