Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Movies of graphene nanopore opening

Figure: Nanopores in graphene, catalyzed by single silicon atoms and recorded by HTEM.

Source: http://www.graphenea.com/blogs/graphene-news/12040077-movies-of-graphene-nanopore-opening#ixzz2tPrSBi3U
Figure: Nanopores in graphene, catalyzed by single silicon atoms and recorded by HTEM. Source: http://www.graphenea.com/blogs/graphene-news/12040077-movies-of-graphene-nanopore-opening#ixzz2tPrSBi3U

Abstract:
Fabricating functional nano-devices is an ultimate goal of nanotechnology. Atomic-scale modification and sculpting of materials can enable nano-machines with wide-varying application potential in biological (medical) and chemical (trace sensing) uses. In our most recent publication, together with Harvard University, the Lawrence Berkeley National Laboratory and FEI corporation, we demonstrate precise modification of graphene at the atomic scale.

Movies of graphene nanopore opening

San Sebastian, Spain | Posted on February 15th, 2014

In our paper "Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene", published in NanoLetters, we report the direct observation of single silicon atoms catalyzing a reaction on a graphene surface. The reaction removes carbon atoms in a controlled fashion, allowing for precise sculpting of nanopores in graphene. Nanopores in graphene hold great technological and scientific potential, and are already being considered for several uses, such as water filtration and DNA sequencing.

Known to humans for centuries, catalysts play an enabling role in many chemical processes that are important to the modern society. Recent advances in nanotechnology introduced nanocatalysts that enable the creation of novel nanostructures, such as carbon nanotubes and semiconductor nanowires. The characteristics of the resulting structures can be tuned by the structures of the corresponding nanocatalysts. For example, in the growth of semiconductor nanowires from metal nanoparticles, the diameter of the resultant nanowire is determined by the size of the catalytic nanoparticles.

Catalysis typically involves complex atomic-scale events that are hard to record, either because they are too fast or too small for the instrumentation used for the recording. We overcome these challenges by using high-resolution transmission electron microscopy (HRTEM) to record individual silicon atoms as they catalyze the graphene chiseling reaction. The products of the chiseling process are atomic-scale features including graphene pores and clean edges.

The silicon atoms are naturally present impurities in the HRTEM chamber. The atoms freely drift along the graphene surface, until they come across an occasional atomic-scale defect in the sheet. The silicon atom then replaces a carbon atom in the chickenwire structure of graphene. A scientist starts the chiseling reaction by directing a focused electron beam to the defect site. The width of the pore starts from only a few angstroms, gradually increasing with the presence of silicon adatoms and under continuous electron irradiation. The pore size is controlled by stopping the irradiation when the desired size has been reached, as seen in the figure above.

These molecular-sized pores are excellent candidates for molecular detection applications, such as rapid DNA sequencing, because they can be tuned to match the size of a single DNA molecule (~10 Angstroms) for the sensitivity that is needed for single base recognition.

Apart from demonstrating the proof of principle, we found some interesting physics of the process, including the dynamics, stability and selectivity of the single-atom chiseling process. Our findings show that there are likely other pairs of atoms in nature, aside from silicon-graphene, that possess atomic chiseling ability.

The graphene used in this research is our standard high-quality CVD graphene, transferred onto a TEM grid.

####

About Graphenea
We are a leading graphene company that manufacture, produce and supply graphene for industrial and research needs. We have developed a synthesis and transfer process to obtain high uniformity monolayer graphene films on any substrate.

For more information, please click here

Contacts:
General Enquiries

Copyright © Graphenea

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper “Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene”, published in NanoLetters:

Download video:

Related News Press

Graphene/ Graphite

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Wrinkles give heat a jolt in pillared graphene : Rice University researchers test 3-D carbon nanostructures' thermal transport abilities November 2nd, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Videos/Movies

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

Physics

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Water

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project