Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > When chemists invent new rattles

Abstract:
Chemists supported by the Swiss National Science Foundation (SNSF) have developed a one-pot synthesis process to encapsulate nanoparticles. This type of particle could improve the antimicrobial coating of implants.

When chemists invent new rattles

Bern, Switzerland | Posted on February 14th, 2014

Western populations live longer while enjoying good health. More and more people, for example young pensioners, have implants fitted to pursue their activities. But such surgery is not without its risks: during an operation, bacteria can reach the surface of the implant. Once they have colonised the surface and formed a biofilm, the implant has to be removed and the wound cleaned. No new implant can be fitted till the infection has cleared up completely. These complications affect 2% of artificial hip joints, 5-10% of artificial knee joints and reach 50% for cardiac shunt and stent operations.

One way of fighting the growth of bacteria on the surface of the implant is the addition of an antimicrobial coating. A research group, led by Katharina Fromm of the University of Fribourg, has developed such a coating. It is currently undergoing in-vivo tests in a project funded by the CTI. This coating continually emits an antimicrobial agent - silver ions - for the duration of approximately three months.

Coating with longer effect

To prolong the efficiency of the coating, the researchers are currently working on a second-generation coating in which the silver nanoparticle would be encapsulated in silica. This would enhance the stability of the nanoparticle by isolating it from its environment. It would also slow down the diffusion of the silver and prolong the efficiency of the coat-ing. Another advantage of this method is that cells can tolerate a much greater number of silver nanoparticles if they are encapsulated than if they are naked.

To this end, the researchers have developed, within the context of the National Research Programme "Smart Materials" (NRP 62), a one-pot synthesis process (*) to encapsulate the nanoparticles. This allows them to determine the porosity and the size of the silica container in relation to the nanoparticle it contains. Under the microscope, it looks like a nanoscopic rattle.

Targeted release

To improve the performance of the coating even further, the researchers - in collaboration with Prof Christian Bochet's group - are also working on bacterial sensors which they aim to attach to the encapsulated nanoparticles. If such a sensor were in place, the silver would only be released if a pathogen were nearby. This targeted release would further prolong the efficiency of the protection and it would prevent silver from being needlessly released into the organism.

The synthesis developed by the researchers allows for the development of various types of containers for various nanoparticles. The application potential for these nano-rattles is therefore considerable: by con-trolling the porosity of the container, it is for example possible to con-trol which molecules can get close to the nanoparticles. This, in turn, would make it possible to create a nanoreactor in which a chemical reaction can take place. The technique might also enable new battery designs in which each encapsulated nanoparticle would play the role of an electrode.

####

About Schweizerischer Nationalfonds zur Foerderung der wissenschaftlichen Forschung
Acting on a mandate issued by the Swiss Federal Government, the Swiss National Science Foundation (SNSF) supports research undertaken inside and outside universities and fosters young scientific talent.

The Foundation Council is the governing body of the SNSF, which was founded in 1952. The Foundation Council has representatives of the scientific and research communities, the Federal Government and the cantons as well as economic and cultural institutions.

The Research Council, which is divided into four Divisions, evaluates research projects and makes decisions about awarding grants. The Local Research Commissions award fellowships for prospective researchers and assist the SNSF with the evaluation of grant applications.

The Secretariat, based in Berne, does the groundwork for the business of the Foundation and Research Councils and is responsible for administrative and financial duties.

About National Research Programme “Smart Materials” (NRP 62)

NRP 62 is a cooperation programme between the Swiss National Sci-ence Foundation (SNSF) and the Innovation Promotion Agency (CTI). The programme's aim is not only to promote scientific excellence but also to promote the successful industrial exploitation of smart materi-als and their application. NRP 62 also strives to link up the available skills and resources of various research institutions in Switzerland. The research work provides the technologies required to develop smart materials and the structures needed to integrate these. Having started its second phase at the beginning of 2013, NRP 62 now consists of 12 projects whose funding has been continued thanks to their high potential for practical application. NRP 62 will come to an end in 2015.
www.nrp62.ch

For more information, please click here

Contacts:
Prof. Katharina M. Fromm
Chemistry department
University of Fribourg
Chemin du Musée 9
1700 Fribourg
Tel. : ++41 26 300 87 32

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Chemistry

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Rice chemist wins rare NSF Special Creativity Award: Grant extension will bolster Zubarev's effort to produce gold nanorods September 8th, 2014

Iranian, Spanish Scientists Produce Recyclable Catalyst by Using Nanoparticles September 3rd, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Nanomedicine

Treatment of Cell Infection by Nanotechnology September 15th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Iranian Scientists Discover Nanotechnology Method to Remove Limitations in Tumor Surgery September 11th, 2014

Iranian Nanotechnology Scientists Produce Polymeric Scaffolds for Tissue Engineering September 11th, 2014

Discoveries

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Announcements

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE