Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > When chemists invent new rattles

Abstract:
Chemists supported by the Swiss National Science Foundation (SNSF) have developed a one-pot synthesis process to encapsulate nanoparticles. This type of particle could improve the antimicrobial coating of implants.

When chemists invent new rattles

Bern, Switzerland | Posted on February 14th, 2014

Western populations live longer while enjoying good health. More and more people, for example young pensioners, have implants fitted to pursue their activities. But such surgery is not without its risks: during an operation, bacteria can reach the surface of the implant. Once they have colonised the surface and formed a biofilm, the implant has to be removed and the wound cleaned. No new implant can be fitted till the infection has cleared up completely. These complications affect 2% of artificial hip joints, 5-10% of artificial knee joints and reach 50% for cardiac shunt and stent operations.

One way of fighting the growth of bacteria on the surface of the implant is the addition of an antimicrobial coating. A research group, led by Katharina Fromm of the University of Fribourg, has developed such a coating. It is currently undergoing in-vivo tests in a project funded by the CTI. This coating continually emits an antimicrobial agent - silver ions - for the duration of approximately three months.

Coating with longer effect

To prolong the efficiency of the coating, the researchers are currently working on a second-generation coating in which the silver nanoparticle would be encapsulated in silica. This would enhance the stability of the nanoparticle by isolating it from its environment. It would also slow down the diffusion of the silver and prolong the efficiency of the coat-ing. Another advantage of this method is that cells can tolerate a much greater number of silver nanoparticles if they are encapsulated than if they are naked.

To this end, the researchers have developed, within the context of the National Research Programme "Smart Materials" (NRP 62), a one-pot synthesis process (*) to encapsulate the nanoparticles. This allows them to determine the porosity and the size of the silica container in relation to the nanoparticle it contains. Under the microscope, it looks like a nanoscopic rattle.

Targeted release

To improve the performance of the coating even further, the researchers - in collaboration with Prof Christian Bochet's group - are also working on bacterial sensors which they aim to attach to the encapsulated nanoparticles. If such a sensor were in place, the silver would only be released if a pathogen were nearby. This targeted release would further prolong the efficiency of the protection and it would prevent silver from being needlessly released into the organism.

The synthesis developed by the researchers allows for the development of various types of containers for various nanoparticles. The application potential for these nano-rattles is therefore considerable: by con-trolling the porosity of the container, it is for example possible to con-trol which molecules can get close to the nanoparticles. This, in turn, would make it possible to create a nanoreactor in which a chemical reaction can take place. The technique might also enable new battery designs in which each encapsulated nanoparticle would play the role of an electrode.

####

About Schweizerischer Nationalfonds zur Foerderung der wissenschaftlichen Forschung
Acting on a mandate issued by the Swiss Federal Government, the Swiss National Science Foundation (SNSF) supports research undertaken inside and outside universities and fosters young scientific talent.

The Foundation Council is the governing body of the SNSF, which was founded in 1952. The Foundation Council has representatives of the scientific and research communities, the Federal Government and the cantons as well as economic and cultural institutions.

The Research Council, which is divided into four Divisions, evaluates research projects and makes decisions about awarding grants. The Local Research Commissions award fellowships for prospective researchers and assist the SNSF with the evaluation of grant applications.

The Secretariat, based in Berne, does the groundwork for the business of the Foundation and Research Councils and is responsible for administrative and financial duties.

About National Research Programme “Smart Materials” (NRP 62)

NRP 62 is a cooperation programme between the Swiss National Sci-ence Foundation (SNSF) and the Innovation Promotion Agency (CTI). The programme's aim is not only to promote scientific excellence but also to promote the successful industrial exploitation of smart materi-als and their application. NRP 62 also strives to link up the available skills and resources of various research institutions in Switzerland. The research work provides the technologies required to develop smart materials and the structures needed to integrate these. Having started its second phase at the beginning of 2013, NRP 62 now consists of 12 projects whose funding has been continued thanks to their high potential for practical application. NRP 62 will come to an end in 2015.
www.nrp62.ch

For more information, please click here

Contacts:
Prof. Katharina M. Fromm
Chemistry department
University of Fribourg
Chemin du Musée 9
1700 Fribourg
Tel. : ++41 26 300 87 32

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Chemistry

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time May 19th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Physicists measure van der Waals forces of individual atoms for the first time May 14th, 2016

Atomic force microscope reveals molecular ghosts: Mapping molecules with atomic precision expands toolbox for designing new catalytic reactions May 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Nanomedicine

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic