Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > How to make the wonder material graphene superconducting

ARPES measurements of Calcium doped graphene. Left: the Fermi surface of graphene (top) and the Dirac cone (bottom). Right: The kink in the spectral function in the two crystallographic main directions. The scientists analysed the strength of the kink in order to estimate the superconducting critical temperature.Copyright: A. Grüneis and A.V. Fedorov
ARPES measurements of Calcium doped graphene. Left: the Fermi surface of graphene (top) and the Dirac cone (bottom). Right: The kink in the spectral function in the two crystallographic main directions. The scientists analysed the strength of the kink in order to estimate the superconducting critical temperature.

Copyright: A. Grüneis and A.V. Fedorov

Abstract:
Whenever a new material is discovered, scientists are eager to find out whether or not it can be superconducting. This applies particularly to the wonder material graphene. Now, an international team around researchers at the University of Vienna unveiled the superconducting pairing mechanism in Calcium doped graphene using the ARPES method. Their results are published in the reputed journal Nature Communications.

How to make the wonder material graphene superconducting

Vienna, Austria | Posted on February 11th, 2014

Superconducting materials exhibit an invaluable feature when cooled below a critical temperature - they allow the transport of an electric current without loss. Superconductivity is based on the fact that in certain materials electrons can pair up which - at a higher temperature - would otherwise repel each other. Scientists from the Electronic Properties of Materials Group at the Faculty of Physics (University of Vienna) and their collaboration partners teamed up to uncover the potential superconducting coupling mechanism of the wonder material graphene.

Graphene, a single-atom thick layer of carbon atoms was discovered in 2004 and is regarded as one of the most amazing and versatile substances available to mankind. The impact of the first real two-dimensional material is so significant that a Nobel Prize was awarded for its discovery. Until recently, there were no experimental reports of superconductivity in graphene although its close relatives, graphite and fullerenes can be made superconducting by intentionally introducing electrons in the material (doping).

The ARPES method - how light sheds light on superconductivity
In order to shed light on superconductivity in graphene, the scientists resorted to the powerful photoemission method: when a light particle interacts with a material it can transfer all its energy to an electron inside that material. If the energy of the light is sufficiently large, the electron acquires enough energy to escape from the material. Determining the angle under which the electrons escape from the material enables the scientists to extract valuable information on the electronic properties and the complex many-body interactions of the material. Nikolay Verbitskiy and Alexander Grüneis from the University of Vienna together with Alexander Fedorov and Denis Vyalikh from IFW-Dresden and TU-Dresden and Danny Haberer from the University of California at Berkeley and their colleagues employed this technique - the so-called Angle-resolved photoemission spectroscopy (ARPES) - at the Elettra synchrotron in Trieste where they researched the interaction of a series of electron dopants (Cs, Rb, K, Na, Li, Ca) with monolayer graphene.

Who makes the grade?
According to the findings of the scientists, calcium is the most promising candidate to induce superconductivity in graphene with a critical temperature of about 1.5K. This critical temperature is rather low compared to e.g. fullerenes which superconduct at 33K. However, graphene offers several huge advantages over many other materials. Since it consists only of carbon atoms arranged in single layers, it is easy to be chemically functionalized. Moreover, it can be grown in multiple numbers of atom layers in various stacking orders and can be doped in several different ways. Thereby, it gives a multitude of options to experiment with.

The scientists are confident that, while graphene will not set new record critical temperatures, the ease by which its properties can be modified will enhance our understanding of superconductivity in general and carbon materials in particular.

####

For more information, please click here

Contacts:
Dr. Alexander Grüneis
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43 664 602 77 513 72


Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-60277-175 33

Copyright © University of Vienna

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

5:3257

Related News Press

News and information

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Superconductivity

Iron secrets behind superconductors unlocked July 7th, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Graphene/ Graphite

Scientists produce dialysis membrane made from graphene: Material can filter nanometer-sized molecules at 10 to 100 times the rate of commercial membranes June 29th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Thought Leaders and Experts Join National Graphene Association Advisory Board June 16th, 2017

Seeing the invisible with a graphene-CMOS integrated device June 6th, 2017

Discoveries

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Announcements

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project