Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New live-cell printing technology works like ancient Chinese woodblocking

This image shows cells printed in a grid pattern by block cell printing technology (left) and woodblocks used in ancient Chinese printing (right).

Credit: Lidong Qin lab and Digital Museum of Science and Art (Beijing, China)
This image shows cells printed in a grid pattern by block cell printing technology (left) and woodblocks used in ancient Chinese printing (right).

Credit: Lidong Qin lab and Digital Museum of Science and Art (Beijing, China)

Abstract:
With a nod to 3rd century Chinese woodblock printing and children's rubber stamp toys, researchers in Houston have developed a way to print living cells onto any surface, in virtually any shape. Unlike recent, similar work using inkjet printing approaches, almost all cells survive the process, scientists report in this week's Proceedings of the National Academy of Sciences.

New live-cell printing technology works like ancient Chinese woodblocking

Houston, TX | Posted on February 10th, 2014

The researchers, led by Houston Methodist Research Institute nanomedicine faculty member Lidong Qin, Ph.D., say their approach produces 2-D cell arrays in as little as half an hour, prints the cells as close together as 5 micrometers (most animal cells are 10 to 30 micrometers wide), and allows the use of many different cell types. They've named the technology Block-Cell-Printing, or BloC-Printing.

"We feel the current technologies are inadequate," Qin said. "Inkjet-based cell printing leaves many of the cells damaged or dead. We wanted to see if we could invent a tool that helps researchers obtain arrays of cells that are alive and still have full activity."

Recent work to print cells in two and three dimensions using electricity-gated inkjet technology have been largely successful, but sometimes only half of the printed cells survive the printing process -- a source of frustration for many laboratory scientists.

"Cell printing is used in so many different ways now -- for drug development and in studies of tissue regeneration, cell function, and cell-cell communication," Qin said. "Such things can only be done when cells are alive and active. A survival rate of 50 to 80 percent is typical as cells exit the inkjet nozzles. By comparison, we are seeing close to 100 percent of cells in BloC-Printing survive the printing process."

BloC-Printing manipulates microfluidic physics to guide living cells into hook-like traps in the silicone mold. Cells flow down a column in the mold, past trapped cells to the next available slot, eventually creating a line of cells (in a grid of such lines). The position and spacing of the traps and the shape of the channel navigated by the cells is fully configurable during the mold's creation. When the mold is lifted away, the living cells remain behind, adhering to the growth medium or other substrate, in prescribed formation.

Qin's group tested BloC-Printing for its utility in studying cancerous cells and primary neurons. By arranging metastatic cancer cells in a grid and examining their growth in comparison with a non-metastatic control, the researchers found they could easily characterize the metastatic potential of cancer cells.

"We looked at cancer cells for their protrusion generation capability, which correlates to their malignancy level," Qin said. "Longer protrusion means more aggressive cancer cells. The measurement may help to diagnose a cancer's stage."

The researchers also printed a grid of brain cells and gave the cells time to form synaptic and autaptic junctions.

"The cell junctions we created may be useful for future neuron signal transduction and axon regeneration studies," Qin said. "Such work could be helpful in understanding Alzheimer's disease and other neurodegenerative diseases."

While it is too early to predict the market cost of BloC-Printing, Qin said the materials of a single BloC mold cost about $1 (US). After the mold has been fabricated and delivered, a researcher only needs a syringe, a carefully prepared suspension of living cells, a Petri dish, and a steady hand, Qin said. Inkjet cell printers can cost between $10,000 and $200,000.

"BloC-Printing can be combined with molecular printing for many types of drug screening, RNA interference, and molecule-cell interaction studies," he said. "We believe the technology has big potential."

While the fidelity of BloC-Printing is high, Qin said inkjet printing remains faster, and BloC-Printing cannot yet print multi-layer structures as inkjetting can.

###

Qin and postdoctoral fellow Kai Zhang, Ph.D., are BloC-Printing's co-inventors.

Qin and Zhang's PNAS coauthors are Chao-Kai Chou, Ph.D., and Mien-Chie Hung, Ph.D., (the University of Texas M.D. Anderson Cancer Center), and Xiaofeng Xia, Ph.D. (Houston Methodist Research Institute). The researchers acknowledge support from the National Institutes of Health, the Cancer Prevention and Research Institute of Texas, the U.S. Dept. of Defense, the Emily Hermann Research Fund, the Golfers Against Cancer, and the Alliance for Nanohealth.

In addition to his position in the Houston Methodist Research Institute's Department of Nanomedicine, Qin is also a Weill Cornell Medical College assistant professor of cell and developmental biology.

####

For more information, please click here

Contacts:
David Bricker

832-667-5811

Copyright © Houston Methodist

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Discoveries

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Announcements

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Nanobiotechnology

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

Printing/Lithography/Inkjet/Inks

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE