Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Molecular Traffic Jam Makes Water Move Faster through Nanochannels: Researchers find the unusual movement of water molecules through carbon nanotubes explains their faster-than-expected travel times

Abstract:
Cars inch forward slowly in traffic jams, but molecules, when jammed up, can move extremely fast.

New research by Northwestern University researchers finds that water molecules traveling through tiny carbon nanotube pipes do not flow continuously but rather intermittently, like stop-and-go traffic, with unexpected results.

Molecular Traffic Jam Makes Water Move Faster through Nanochannels: Researchers find the unusual movement of water molecules through carbon nanotubes explains their faster-than-expected travel times

Evanston, IL | Posted on February 6th, 2014

"Previous molecular dynamics simulations suggested that water molecules coursing through carbon nanotubes are evenly spaced and move in lockstep with one another," said Seth Lichter, professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science. "But our model shows that they actually move intermittently, enabling surprisingly high flow rates of 10 billion molecules per second or more."

The findings could resolve a quandary that has baffled fluid dynamics experts for years. In 2005, researchers — working under the assumption that water molecules move through channels in a constant stream — made a surprising discovery: water in carbon nanotubes traveled 10,000 times faster than predicted.

The phenomenon was attributed to a supposed smoothness of the carbon nanotubes' surface, but further investigation uncovered the counterintuitive role of their inherently rough interior.

Lichter and post-doctoral researcher Thomas Sisan performed new simulations with greater time resolution, revealing localized variations in the distribution of water along the nanotube. The variations occur where the water molecules do not line up perfectly with the spacing between carbon atoms — creating regions in which the water molecules are unstable and so propagate exceedingly easily and rapidly through the nanotube.

Nanochannels are found in all of our cells, where they regulate fluid flow across cell membranes. They also have promising industrial applications for desalinating water. Using the newly discovered fluid dynamics principles could enable other applications such as chemical separations, carbon nanotube-powered batteries, and the fabrication of quantum dots, nanocrystals with potential applications in electronics.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research is described in an Editor’s Choice paper, “Solitons Transport Water through Narrow Carbon Nanotubes,” published January 27 in the journal Physical Review Letters:

Related News Press

News and information

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Discoveries

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Unraveling the light of fireflies December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Water

Unraveling the light of fireflies December 17th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Iranian Scientists Refine Wastewater of Nuclear Power Plants Using Nanoparticles December 1st, 2014

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Industrial

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

Simple, Biocompatible Method Developed for Production of Cerium Oxide Nanoparticles December 9th, 2014

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Nexeon Attracts ex-Nokia Product Executive to its Board of Directors December 15th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Lengthening the life of high capacity silicon electrodes in rechargeable lithium batteries: Novel rubber-like coating could lead to longer lasting batteries December 2nd, 2014

Atmospheric carbon dioxide used for energy storage products December 2nd, 2014

Quantum Dots/Rods

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE