Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene ‘sandwich’ improves imaging of biomolecules

Robert KliePhoto: UIC Photo Services
Robert Klie

Photo: UIC Photo Services

Abstract:
By sandwiching a biological molecule between sheets of graphene, researchers at the University of Illinois at Chicago have obtained atomic-level images of the molecule in its natural watery environment.

Graphene ‘sandwich’ improves imaging of biomolecules

Chicago, IL | Posted on February 5th, 2014

The results are published online in advance of print in the journal Advanced Materials.

The molecule, ferritin, is a highly conserved protein that regulates the levels of iron in animals and plants. Ferritin can sequester excess iron, which can be toxic, and release it when it is needed.

"We found a way to encapsulate a liquid sample in two very thin layers of graphene — sheets of carbon that are only one atom thick," said Canhui Wang, UIC graduate student in physics and first author of the study.

Electron microscopes let researchers see at the level of individual atoms. But to do so they must put the samples in a vacuum, making it impossible to image biomolecules in water in their natural, functional state. Biological samples have usually been placed in a container called a "liquid stage," wedged between relatively thick windows of silicon nitrate.

Robert Klie, the senior investigator on the study, says the thin layers of graphene in the new system work better, being nearly transparent.

"It's like the difference between looking through Saran Wrap and thick crystal," said Klie, who is associate professor of physics and mechanical and industrial engineering at UIC.

Not only resolution improved compared to the liquid stage. The graphene sandwich also minimizes damage to the sample from radiation, said Wang.

According to Wang, some people have calculated that just to barely visualize a sample requires the equivalent of 10 times the radiation 30 meters away from a 10 megaton hydrogen bomb. "We often use an electron beam that is several orders of magnitude more intense in our experiments," he said.

Graphene has an extraordinarily high thermal and electro-conductivity, said Klee, and is able to conduct away both the heat and the electrons generated as the electron microscope's beam passes through the sample.

Instead of using a low-energy beam to minimize damage, which yields a fuzzy picture that must be refined using a mathematical algorithm, the scientists were able to use high energies to generate images of ferritin at atomic level resolution. This enabled them to see, in a single functioning molecule, that iron oxide in ferritin's core changes its electrical charge, initiating the release of iron.

This insight into how the ferritin core handles iron may lead to a better understanding of what goes wrong in many human disorders, said Tolou Shokuhfar, assistant professor of mechanical engineering-engineering mechanics at Michigan Technological University and adjunct professor of physics at UIC, the principal investigator of the study.

"Defects in ferritin are associated with many diseases and disorders, but it has not been well understood how a dysfunctional ferritin works towards triggering life-threatening diseases in the brain and other parts of the human body," said Shokuhfar.

Wang had to solve a number of technical issues to develop the new technique, said Klie, but the graphene sandwich will now "open up analysis of biological and other difficult to image samples to almost anyone with an electron microscope." In contrast, he said, the standard liquid stage requires a large upfront investment in equipment and expensive preparation of each sample.

With graphene, once the technique is mastered, preparation of samples can be done quickly and cheaply, said Wang.

Qiao Qiao, formerly a graduate student in Klie's UIC lab and now a postdoctoral fellow at Vanderbilt University, is also a co-author on the study.

The work was funded by Michigan Technological University and a grant to UIC from the National Science Foundation, DMR-0959470.

####

For more information, please click here

Contacts:
Jeanne Galatzer-Levy

312-996-1583

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project