Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Diamond Defect Boosts Quantum Technology

Abstract:
New research shows that a remarkable defect in synthetic diamond produced by chemical vapor deposition allows researchers to measure, witness, and potentially manipulate electrons in a manner that could lead to new "quantum technology" for information processing. The study is published in the January 31, 2014, issue of Physical Review Letters.

Diamond Defect Boosts Quantum Technology

Washington, DC | Posted on February 4th, 2014

Normal computers process bits, the fundamental ones and zeros, one at a time. But in quantum computing, a "qubit" can be a one or a zero at the same time. This duplicitous state can allow multitasking at an astounding rate, which could exponentially increase the computing capacity of a tiny, tiny machine.

An "NV-" center can be created within a diamond's scaffold-like structure by replacing a missing carbon atom with a nitrogen atom (N)that has trapped an electron making the center negatively charged. Scientists can monitor the center's behavior and thereby provide a window for understanding how electrons respond to different conditions. The center has the potential to serve as a qubit in future quantum computers.

Electrons occupy different orbits around their atom and, by analogy, spin like the Earth. For the first time, Struzhkin and his team, led by Marcus Doherty of the Australian National University, observed what happens to electrons in these NV- centers under high-pressure and normal temperatures. Coauthor of the study, Viktor Struzhkin at the Carnegie Institution for Science, explained: "Our technique offers a powerful new tool for analyzing and manipulating electrons to advance our understanding of high-pressure superconductivity, as well as magnetic and electrical properties."

Struzhkin and team subjected single-crystal diamonds to pressures up to 600,000 times atmospheric pressure at sea level (60 gigapascals, GPa) in a diamond anvil cell and observed how electron spin and motion were affected. They optically excited the NV- centers with light and scanned microwave frequencies in a process called optically detected magnetic resonance to determine any changes. The NV- center is very sensitive to magnetic fields, electrical fields, and stress.

Until now, researchers thought that the orbits of the electrons that contribute to the defect's electronic structure and spin dynamics were localized to the area immediately surrounding the vacancy. Doherty explained: "Our team found instead that the electrons also orbit more distant atoms and that the span of their orbits contract with increasing pressure."

In addition to overturning previous beliefs about the electron orbits, the researchers found a sensitive means to measure pressure. This method can detect changes in pressure of about 10 atmospheres in one second, even up to pressures of 500,000 atmospheres (50 GPa).

"This work demonstrates that defects in diamond have great potential as quantum sensors of high pressure phenomena and, conversely, that high pressure can be employed to study the quantum phenomena of the defects," remarked Doherty.

###

This work was supported by BES/DOE, DOE-NNSA, the Australian Research Council Discovery Project, Centre of Excellence for Quantum Computation and Communications Technology, and the Alexander von Humboldt Foundation.

####

About Carnegie Institution
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

For more information, please click here

Contacts:
Viktor Struzhkin

202-478-8952

Copyright © Carnegie Institution

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Chip Technology

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Quantum Computing

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Sensors

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Production of Biosensor in Iran to Detect Oxalic Acid February 18th, 2015

Discoveries

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Announcements

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

Quantum nanoscience

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE