Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Patterns of particles generated by surface charges: Disorder turns into order: scientists at the Vienna University of Technology can show how intricate structures can emerge from inhomogeneously charged particles

Disordered gel-like structures - with interconnected rings
Disordered gel-like structures - with interconnected rings

Abstract:
Tuning the material structure at the nanoscale level can be really hard to achieve - but what if we had small particles, which assemble all by themselves, creating the required structure? At the Vienna University of Technology (TU Wien), the phenomenon of self-assembly is being investigated by studying inhomogeneously charged particles. Depending on different parameters, they can form gel-like or crystal-like structures. This kind of self-assembly holds great promise for nanotechnology.

Patterns of particles generated by surface charges: Disorder turns into order: scientists at the Vienna University of Technology can show how intricate structures can emerge from inhomogeneously charged particles

Vienna, Austria | Posted on February 4th, 2014

Micro Particles with Specially Structured Surfaces

Emanuela Bianchi is a scientist in Prof. Gerhard Kahls research group at the Institute for Theoretical Physics of the Vienna University of Technology. In her computer simulations, she reproduces the bahavior of particles which are no bigger than a few micrometers - comparable to viruses or small bacteria. She is especially interested in nanoparticles with a complicated surface, consisting of different kinds of patches distinguished by different physical properties.

Recent work (funded via an Elise Richter Fellowhip by the FWF) has focused on particles with inhomogeneously charged surface regions: The majority of the particle carries negative electric charge, but the polar regions on the top and at the bottom of the particle are positively charged. "Due to the fact that like charges repel while opposite charges attract each other", says Emanuela Bianchi, "our particles tend to align in such a way that the pole of one particle points towards the equator of the other." But when many of these particles interact, things get more complicated.

Computer simulations have now been able to show how these particles behave when they are trapped between two planes so that they have to align in quasi two dimensional structures. The results showed that there are different possible configurations: Sometimes the particles are tightly packed in a simple hexagonal structure, which is well known from crystals. Sometimes, less ordered gel-like structures emerge, with interconnected rings of five or six particles.

"With our model, we can find out which parameters determine the emerging structure", says Emanuela Bianchi. The size of the positively charged polar patches plays an especially important role. Spheres on which the border between negative and positive charge is at 45 degrees latitude create much more ordered structures than particles on which this border is closer at the pole, at 60 degrees. The result can also be influenced by tuning the electrical charge of the floor plate on which the particles rest - a parameter which is very easy to control in an experiment. Such a parameter controls the size of the aggregates and can even be responsible for a complete suppression of the particle aggregation.

Materials with Taylor Made Properties

Understanding the self-assembly of microparticles opens the door to designing particles which automatically form taylor-made structures. Depending on the microscopic alignment of the particles, they create surface types with different densities and different responses to external stimuli (e.g. elcetromagnetic fields). This means that self-assembled structures could for instance be used to create filters with tunable porosity. "Especially for biomedical applications, this could have many possible applications", says Emanuela Bianchi.

####

For more information, please click here

Contacts:
Florian Aigner

43-158-801-41027

Further Information:
Dr. Emanuela Bianchi
Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13631

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results of the research project have been published in the journal “ACS Nano”:

Related News Press

News and information

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Self Assembly

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Cypress’s TrueTouch® Touchscreen Controllers Compatible with Cima NanoTech’s SANTE® Silver Nanoparticle-Based Touch Sensors: Supporting Designs for Advanced Touch Applications March 5th, 2014

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes March 1st, 2014

A potentially revolutionnary material: Scientists produce a novel form of artificial graphene February 15th, 2014

Discoveries

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Economics = MC2 -- A portrait of the modern physics startup: Successful companies founded by physicists often break the Silicon Valley model, according to new American Institute of Physics report April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE