Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Modified Nanozeolite Boost Efficiency of Nickel Removal from Wastewater

Abstract:
Iranian researchers from Islamic Azad University, Shahreza Branch, increased the efficiency of the removal of nickel (II) toxic ion from aqueous solutions by modifying clinoptilolite nanozeolite.

Modified Nanozeolite Boost Efficiency of Nickel Removal from Wastewater

Tehran, Iran | Posted on February 2nd, 2014

In addition to removing nickel from wastewater, the researchers also succeeded in simultaneous synthesis of a material with catalytic properties.

The researchers firstly converted clinoptilolite zeolite particles into micrometric particles (MCP) through mechanical methods, and then converted the particles into nanoparticles (NCP). In order to eliminate probable impurities caused during the milling process and also the impurities dissolved in water, they refluxed the obtained powder in addition to suspending stirring with magnet by using magnetic stirrer. Then, they made contact between NCP and DMG alcoholic solution and they prepared NCP exchanger modified with DMG ligand (NCP-DMG).

In this research, DMG - a selective ligand for nickel ion - was used to modify zeolite nanoparticles. During the process, an adsorbent with desirable selectivity for nickel was obtained as well as increasing the adsorption capacity of nickel by zeolite.

In this research, sorption efficiency and selectivity of the adsorbent towards nickel ion were increased by modifying nanozeolite particles with dimethylglyoxime ligand, and a catalyst was obtained as co-product. The use of natural zeolite as the bed is among the characteristics of the research because it is available, cost-effective, and accessible.

The adsorbent produced in this method can be used in the removal of nickel ion from wastewaters of industries such as cell-fabrication, plating, and so on. The sorbent can be used as a catalyst in partial oxidation of some alcohols after adsorption of nickel.

Results of the research have been published in Journal of Hazardous Materials, vol. 260, 15 September 2013, pp. 339-349.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Chemistry

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Phononic SEIRA -- enhancing light-molecule interactions via crystal lattice vibrations April 10th, 2018

Discoveries

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Announcements

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Environment

'Sweet spot' in sweet material for hydrogen storage: Study IDs 'white graphene' architecture with unprecedented hydrogen storage capacity March 12th, 2018

Converting CO2 into Usable Energy: Scientists show that single nickel atoms are an efficient, cost-effective catalyst for converting carbon dioxide into useful chemicals March 1st, 2018

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Water

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project