Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quicker method paves the way for atomic-level design

Abstract:
A new X-ray method will enable the development of more efficient catalysts. The method opens up new opportunities to work on atomic level in a number of areas of materials science. Researchers from Lund University are among those behind the new method.

Quicker method paves the way for atomic-level design

Lund, Sweden | Posted on February 1st, 2014

The new X-ray method is used to determine the atomic structure of the surface of different materials.
The goal of the present research is to understand how catalysts work at atomic level - both the catalytic converters used for vehicle emissions control in cars and catalysts used in industry.

"Today, almost all developments in catalysts take place through a method of trial and error, but in order to be able to develop better catalysts in the future, deeper understanding of the atomic level is needed", says Dr Johan Gustafson, a researcher at the Department of Physics at Lund University.

A catalyst works by capturing the molecules that are to react on a catalytic surface. The effect of the surface on the molecules is to speed up the desired reaction. The surfaces of different materials capture and affect molecules in different ways. The new X-ray method offers researchers a significantly improved insight into what happens on these surfaces and in their active sites, i.e. the places where the molecules attach and react.

With this knowledge, the material in the catalyst can be optimised to speed up desired reactions and slow down others. The new X-ray method not only provides an instant picture of the situation on a surface, but can also be used to monitor changes over the time that the surface is subjected to different treatments.

"This could be a catalytic reaction that happens on the surface, as in our case. But it would also be possible to monitor how nanostructures grow or how metals oxidise, in conjunction with corrosion, as protection against corrosion or to change the properties of the surface in another way", says Johan Gustafson.

The researchers have developed the new X-ray method by using X-rays of around five times higher energy than usual. This means that a larger amount of data can be measured simultaneously, which in turn drastically reduces the time taken to conduct a full surface structure determination, from ten hours with the traditional method to roughly ten minutes with the new method.

The journal Science now reports on the new X-ray method, which Johan Gustafson has developed with colleagues from Lund University, Chalmers University of Technology in Gothenburg, the DESY research centre in Germany and Hamburg University.

####

About Lund University
Our university has all the advantages of a wide academic range and highly-qualified staff. We offer a rich and diverse academic environment with creative links between students and teachers, international cutting-edge researchers and between university and community.

Lund University is Scandinavia's largest institution for education and research. We are active in Lund, Malmoe and Helsingborg, and have a comprehensive global network of contacts and growing co-operation within the oeresund University.

For more information, please click here

Contacts:
Lotte Billing


Dr Johan Gustafson
Associate Senior Lecturer in Synchrotron Radiation Physics
Department of Physics, Lund University
Tel. +46 46 222 38 70

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Chemistry

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Imaging

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Molecular Nanotechnology

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

DNA dominos on a chip: Carriers of genetic information packed together on a biochip like in nature August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Discoveries

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Announcements

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Tools

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic