Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-aligning DNA wires for application in nanoelectronics

What looks like sand dunes is actually smaller than a single grain of sand. Thanks to electrostatic surface interactions, DNA nanotubes (shown here in red) align along the prefabricated nanopattern on a silicon surface.
What looks like sand dunes is actually smaller than a single grain of sand. Thanks to electrostatic surface interactions, DNA nanotubes (shown here in red) align along the prefabricated nanopattern on a silicon surface.

Abstract:
Since continuous miniaturization in microelectronics is already starting to reach the physical limits, researchers are seeking new methods for device fabrication. One promising candidate is the DNA origami technique in which individual strands of the biomolecule self-assemble into arbitrarily shaped nanostructures. The formation of entire circuits, however, requires the controlled positioning of these DNA structures on a surface - something which previously has only been possible using very elaborate techniques. Now, researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have come up with a simpler strategy which combines DNA origami with self-organized pattern formation. The researchers' method is featured in the scientific journal Nanoscale's current issue (DOI: 10.1039/C3NR04627C)

Self-aligning DNA wires for application in nanoelectronics

Dresden, Germany | Posted on January 30th, 2014

Dr. Adrian Keller of the HZDR Institute of Ion Beam Physics and Materials Research describes the new method: "Its beauty lies with the fact that we're allowing nature to simply run its course as soon as we've created the necessary framework." In the DNA origami technique, the DNA structures self-assemble as long strands of the biomolecule fold into complex, predefined nanoscale shapes by pairing with multiple smaller DNA strands. The physicists used the technique to produce small tubes with lengths of 412 nanometers and diameters of six nanometers. These structures can be used as scaffolds for manufacturing nanoelectronic components like nanowires.

In order to align these nanotubes on the surface, the researchers drew on a principle of self-organization that is actually quite common in nature. Wind may for instance form ordered patterns on a sandy beach. "Similar processes are at work here," explains Keller. "We irradiate the surface onto which we want to place the nanostructures - in our case, the silicon wafers - with ions. This results in the spontaneous appearance of ordered nanopatterns resembling miniature sand dunes. At that point, our job is pretty much done as natural processes are taking over and doing all the work."

Through electrostatic interactions between the charged DNA nanostructures and the charged surface, the nanotubes align themselves in the valleys of the dunes. Says Keller: "This technique works so well that not only do the small tubes follow the wavy patterns, they even replicate occasional pattern defects. Meaning this technique should also allow for production of curved nanocomponents." The maximum degree of alignment the Dresden researchers were able to obtain was at a pattern wavelength of 30 nanometers. "True, we're only looking at a total yield of 70 percent of nanotubes that perfectly follow the pattern," concedes Keller. "But it's still impressive considering the natural process we used."

Because unlike previous approaches, according to Keller, the new technique is quick, cheap, and simple. "Until now, we had to draw on lithographic techniques plus treat the surface with chemicals in order to align the DNA nanostructures. Although this does produce the desired outcome, it nonetheless complicates the processes. Our new technique offers a much simpler alternative." Since aligning the small tubes is based exclusively on electrostatic interaction with the prestructured surface, using this particular method the nanotubes could also be arranged into more complex arrays such as electronic circuits. Keller is convinced that they can be attached to individual transistors, for instance, and connect them electrically: "This way, DNA based nanocomponents could be integrated into technological devices and contribute to further miniaturization."

Developing electronic circuits based on such self-organization principles is the subject of research at the HZDR-coordinated International Helmholtz Research School NanoNet (www.ihrs-nanonet.de). The international Ph.D. program trains junior scientists in molecular electronics as part of DRESDEN-concept - an alliance between the HZDR, the TU Dresden, and several partners from science. The focus of the program is on techniques which functionalize atoms, molecules, and artificial nanostructures to enable information exchange among them and eventually build electronic building blocks like a transistor. The long term vision of this scientific approach is the development of components that spontaneously assemble into electronic circuits.

Publication:

Teshome, B., Facsko, S. & Keller, A. (2014). Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces. Nanoscale, 6,1790, DOI: 10.1039/C3NR04627C

####

For more information, please click here

Contacts:
For additional information:

Dr. Adrian Keller
Institute of Ion Beam Physics and Materials Research at HZDR
Ph. +49 351 260-3148


Media contact:

Simon Schmitt
Science Editor
Ph. +49 351 260 - 2452

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Chip Technology

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Self Assembly

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

DNA shaping up to be ideal framework for rationally designed nanostructures: Shaped DNA frames that precisely link nanoparticles into different structures offer a platform for designing functional nanomaterials June 14th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Discoveries

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Announcements

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanobiotechnology

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic