Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-aligning DNA wires for application in nanoelectronics

What looks like sand dunes is actually smaller than a single grain of sand. Thanks to electrostatic surface interactions, DNA nanotubes (shown here in red) align along the prefabricated nanopattern on a silicon surface.
What looks like sand dunes is actually smaller than a single grain of sand. Thanks to electrostatic surface interactions, DNA nanotubes (shown here in red) align along the prefabricated nanopattern on a silicon surface.

Abstract:
Since continuous miniaturization in microelectronics is already starting to reach the physical limits, researchers are seeking new methods for device fabrication. One promising candidate is the DNA origami technique in which individual strands of the biomolecule self-assemble into arbitrarily shaped nanostructures. The formation of entire circuits, however, requires the controlled positioning of these DNA structures on a surface - something which previously has only been possible using very elaborate techniques. Now, researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have come up with a simpler strategy which combines DNA origami with self-organized pattern formation. The researchers' method is featured in the scientific journal Nanoscale's current issue (DOI: 10.1039/C3NR04627C)

Self-aligning DNA wires for application in nanoelectronics

Dresden, Germany | Posted on January 30th, 2014

Dr. Adrian Keller of the HZDR Institute of Ion Beam Physics and Materials Research describes the new method: "Its beauty lies with the fact that we're allowing nature to simply run its course as soon as we've created the necessary framework." In the DNA origami technique, the DNA structures self-assemble as long strands of the biomolecule fold into complex, predefined nanoscale shapes by pairing with multiple smaller DNA strands. The physicists used the technique to produce small tubes with lengths of 412 nanometers and diameters of six nanometers. These structures can be used as scaffolds for manufacturing nanoelectronic components like nanowires.

In order to align these nanotubes on the surface, the researchers drew on a principle of self-organization that is actually quite common in nature. Wind may for instance form ordered patterns on a sandy beach. "Similar processes are at work here," explains Keller. "We irradiate the surface onto which we want to place the nanostructures - in our case, the silicon wafers - with ions. This results in the spontaneous appearance of ordered nanopatterns resembling miniature sand dunes. At that point, our job is pretty much done as natural processes are taking over and doing all the work."

Through electrostatic interactions between the charged DNA nanostructures and the charged surface, the nanotubes align themselves in the valleys of the dunes. Says Keller: "This technique works so well that not only do the small tubes follow the wavy patterns, they even replicate occasional pattern defects. Meaning this technique should also allow for production of curved nanocomponents." The maximum degree of alignment the Dresden researchers were able to obtain was at a pattern wavelength of 30 nanometers. "True, we're only looking at a total yield of 70 percent of nanotubes that perfectly follow the pattern," concedes Keller. "But it's still impressive considering the natural process we used."

Because unlike previous approaches, according to Keller, the new technique is quick, cheap, and simple. "Until now, we had to draw on lithographic techniques plus treat the surface with chemicals in order to align the DNA nanostructures. Although this does produce the desired outcome, it nonetheless complicates the processes. Our new technique offers a much simpler alternative." Since aligning the small tubes is based exclusively on electrostatic interaction with the prestructured surface, using this particular method the nanotubes could also be arranged into more complex arrays such as electronic circuits. Keller is convinced that they can be attached to individual transistors, for instance, and connect them electrically: "This way, DNA based nanocomponents could be integrated into technological devices and contribute to further miniaturization."

Developing electronic circuits based on such self-organization principles is the subject of research at the HZDR-coordinated International Helmholtz Research School NanoNet (www.ihrs-nanonet.de). The international Ph.D. program trains junior scientists in molecular electronics as part of DRESDEN-concept - an alliance between the HZDR, the TU Dresden, and several partners from science. The focus of the program is on techniques which functionalize atoms, molecules, and artificial nanostructures to enable information exchange among them and eventually build electronic building blocks like a transistor. The long term vision of this scientific approach is the development of components that spontaneously assemble into electronic circuits.

Publication:

Teshome, B., Facsko, S. & Keller, A. (2014). Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces. Nanoscale, 6,1790, DOI: 10.1039/C3NR04627C

####

For more information, please click here

Contacts:
For additional information:

Dr. Adrian Keller
Institute of Ion Beam Physics and Materials Research at HZDR
Ph. +49 351 260-3148


Media contact:

Simon Schmitt
Science Editor
Ph. +49 351 260 - 2452

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Chip Technology

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Nanoelectronics

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Bit data goes anti-skyrmions September 1st, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

Discoveries

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Announcements

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Nanobiotechnology

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project