Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Metal ink could ease the way toward flexible electronic books, displays

A picture drawn with conductive ink lights up a green LED.
Credit: American Chemical Society
A picture drawn with conductive ink lights up a green LED.

Credit: American Chemical Society

Abstract:
Scientists are reporting the development of a novel metal ink made of small sheets of copper that can be used to write a functioning, flexible electric circuit on regular printer paper. Their report on the conductive ink, which could pave the way for a wide range of new bendable gadgets, such as electronic books that look and feel more like traditional paperbacks, appears in the journal ACS Applied Materials & Interfaces.

Metal ink could ease the way toward flexible electronic books, displays

Washington, DC | Posted on January 29th, 2014

Wenjun Dong, Ge Wang and colleagues note that the tantalizing possibilities of flexible electronics, from tablets that roll up to wearable circuits woven into clothes, have attracted a lot of attention in the past decade. But much of the progress toward this coming wave of futuristic products has entailed making circuits using complicated, time-consuming and expensive processes, which would hinder their widespread use. In response, researchers have been working toward a versatile conductive ink. They have tried several materials such as polymers and gold and silver nanostructures. So far, these materials have fallen short in one way or another. So, Dong and Wang's group decided to try copper nanosheets, which are inexpensive and highly conductive, as a flexible circuit ink.

They made copper nanosheets coated with silver nanoparticles in the laboratory and incorporated this material into an ink pen, using it to draw patterns of lines, words and even flowers on regular printer paper. Then, to show that the ink could conduct electricity, the scientists studded the drawings with small LED lights that lit up when the circuit was connected to a battery. To test the ink's flexibility, they folded the papers 1,000 times, even crumpling them up, and showed that the ink maintained 80 to 90 percent of its conductivity.

The authors acknowledge funding from the National Natural Science Foundation of China, the Zhejiang Provincial Natural Science Foundation of China, the National High-Tech R&D Program of China, the Program for New Century Excellent Talents in University, and the Program for Changjiang Scholars and Innovative Research Team in University.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Wenjun Dong, Ph.D.
Center for Optoelectronics Materials and Devices
Department of Physics
Bio-x Center
Zhejiang Sci-Tech University
Hangzhou 310018
China

or
Ge Wang, Ph.D.
School of Materials Science and Engineering
University of Science and Technology Beijing
Beijing 100083
China


General Inquiries:
Michael Bernstein

202-872-6042

Science Inquiries:
Katie Cottingham, Ph.D.

301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL-TEXT ARTICLE - “Synthesis and Self-Assembly of Large-Area Cu Nanosheets and Their Application as an Aqueous Conductive Ink on Flexible Electronics”

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project