Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nearly Everyone Uses Piezoelectrics: Be Nice to Know How They Work

These two neutron scattering images represent the nanoscale structures of single crystals of PMN and PZT. Because the atoms in PMN deviate slightly from their ideal positions, diffuse scattering results in a distinctive "butterfly" shape quite different from that of PZT, in which the atoms are more regularly spaced.
Credit: NIST
These two neutron scattering images represent the nanoscale structures of single crystals of PMN and PZT. Because the atoms in PMN deviate slightly from their ideal positions, diffuse scattering results in a distinctive "butterfly" shape quite different from that of PZT, in which the atoms are more regularly spaced.

Credit: NIST

Abstract:
Piezoelectrics—materials that can change mechanical stress to electricity and back again—are everywhere in modern life. Computer hard drives. Loud speakers. Medical ultrasound. Sonar. Though piezoelectrics are a widely used technology, there are major gaps in our understanding of how they work. Now researchers at the National Institute of Standards and Technology (NIST) and Canada's Simon Fraser University believe they've learned why one of the main classes of these materials, known as relaxors, behaves in distinctly different ways from the rest and exhibit the largest piezoelectric effect. And the discovery comes in the shape of a butterfly.*

Nearly Everyone Uses Piezoelectrics: Be Nice to Know How They Work

Gaithersburg, MD | Posted on January 29th, 2014

The team examined two of the most commonly used piezoelectric compounds—the ferroelectric PZT and the relaxor PMN—which look very similar on a microscopic scale. Both are crystalline materials composed of cube-shaped unit cells (the basic building blocks of all crystals) that contain one lead atom and three oxygen atoms. The essential difference is found at the centers of the cells: in PZT these are randomly occupied by either one zirconium atom or one titanium atom, both of which have the same electric charge, but in PMN one finds either niobium or manganese, which have very different electric charges. The differently charged atoms produce strong electric fields that vary randomly from one unit cell to another in PMN and other relaxors, a situation absent in PZT.

"PMN-based relaxors and ferroelectric PZT have been known for decades, but it has been difficult to identify conclusively the origin of the behavioral differences between them because it has been impossible to grow sufficiently large single crystals of PZT," says the NIST Center for Neutron Research (NCNR)'s Peter Gehring. "We've wanted a fundamental explanation of why relaxors exhibit the greatest piezoelectric effect for a long time because this would help guide efforts to optimize this technologically valuable property."

A few years ago, scientists from Simon Fraser University found a way to make crystals of PZT large enough that PZT and PMN crystals could be examined with a single tool for the first time, permitting the first apples-to-apples comparison of relaxors and ferroelectrics. That tool was the NCNR's neutron beams, which revealed new details about where the atoms in the unit cells were located. In PZT, the atoms sat more or less right where they were expected, but in the PMN, their locations deviated from their expected positions—a finding Gehring says could explain the essentials of relaxor behavior.

"The neutron beams scatter off the PMN crystals in a shape that resembles a butterfly," Gehring says. "It gives a characteristic blurriness that reveals the nanoscale structure that exists in PMN—and in all other relaxors studied with this method as well—but does not exist in PZT. It's our belief that this butterfly-shaped scattering might be a characteristic signature of relaxors."

Additional tests the team performed showed that PMN-based relaxors are over 100 percent more sensitive to mechanical stimulation compared to PZT, another first-time measurement. Gehring says he hopes the findings will help materials scientists do more to optimize the behavior of piezoelectrics generally.

*D. Phelan, C. Stock, J.A. Rodriguez-Rivera, S. Chi, J.Leão, X. Long,Y. Xie, A.A. Bokov, Z. Ye, P. Ganesh and P.M. Gehring. Role of random electric fields in relaxors. Proceedings of the National Academy of Sciences, Jan. 21, 2014. DOI:10.1073/pnas.1314780111.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

As You Sow’s Shareholder Inquiry on Nanomaterials Fought by Walgreens: Shareholder Proposal Addresses Recent Laboratory Tests Finding Harmful Nanomaterials in Walgreens’ Store Brand Infant Formula September 21st, 2016

Imaging

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Laboratories

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Fish 'biowaste' converted to piezoelectric energy harvesters: Jadavpur University researchers in India devised a way to recycle fish byproducts into an energy harvester for self-powered electronics September 8th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic