Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Blackout at the Big Game? No Problem for Pictures; New "Photodetector" Nanotechnology Allows Photos in Near Darkness: Consumer cameras, MRI machines among devices that could benefit from SUNY CNSE research

Abstract:
When the lights went out at the big game, fans and film crews struggled to take a decent picture in the darkness. Those same folks will be cheering the latest research by a team of SUNY College of Nanoscale Science and Engineering (CNSE) scientists, which makes brilliant video and pictures possible even if the lights go out.

Blackout at the Big Game? No Problem for Pictures; New "Photodetector" Nanotechnology Allows Photos in Near Darkness: Consumer cameras, MRI machines among devices that could benefit from SUNY CNSE research

Albany, NY | Posted on January 29th, 2014

Dark and blurry low light photos could soon be a thing of the past, thanks to the development of game-changing ultrathin "nanosheets," which could dramatically improve imaging technology used in everything from cell phone cameras, video cameras, solar cells, and even medical imaging equipment such as MRI machines.

This pioneering research, which was published in ACS Nano, would also be cost-effective to implement. The ultrathin indium(III) selenide (In2Se3) -based photodetectors use less material because they consist of nano-sized components that are highly efficient at detecting light in real-time. As a result, this technology is perfectly suited for inclusion in a wide variety of everyday devices, including today's smartphones, which are often used to take pictures, but suffer from limitations in low light environments. This research could allow even novice photographers to take sharper images, even in the midst of a blackout during the biggest game of the year.

"Currently, the sensors in digital cameras cannot take quality images under low-light conditions. For example, taking a good picture in a dimly lit room requires a long exposure, which often results in a blurred image. Hollywood needs to use special lights and filters to make a scene appear dark because filming must be done in well-lit conditions. Future cameras based on these nanosheet photodetectors may be able to provide a robust, real-time picture in even the most extreme low light conditions." said Robin Jacobs-Gedrim, CNSE Research Assistant. "Our work could also lead to next-generation applications, making solar panels more efficient, scientific instruments more precise, and medical imaging equipment even more accurate, which shows the power of CNSE's nano-based research to find technological solutions for a range of industries."

"We are thrilled to share the findings of this CNSE research team as it showcases the college's leading-edge capabilities to improve everyday technologies," said Dr. Bin Yu, CNSE Professor of Nanoengineering. "This research is exciting not only because it is a further testament to the caliber of CNSE's scientists and state-of-the-art facilities, but also because it could lead to more efficient imaging devices for the improvement of healthcare, the advancement of real-time video recording, and the development of more efficient photovoltaics, all of which have the potential to improve countless lives."

####

About SUNY College of Nanoscale Science and Engineering (CNSE)
The SUNY College of Nanoscale Science and Engineering (CNSE) is the world leader in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE represents the world’s most advanced university-driven research enterprise, with more than $20 billion in high-tech investments and over 300 corporate partners. The 1.3 million-square-foot Albany NanoTech megaplex is home to more than 3,100 scientists, researchers, engineers, students, and faculty. CNSE maintains a statewide footprint, operating the Smart Cities Technology Innovation Center (SCiTI) at Kiernan Plaza in Albany, the Solar Energy Development Center in Halfmoon, the Photovoltaic Manufacturing and Technology Development Facility in Rochester, and the Smart System Technology and Commercialization Center (STC) in Canandaigua. CNSE co-founded and manages the Computer Chip Commercialization Center (Quad-C) at SUNYIT, and is lead developer of the Marcy Nanocenter site in Utica, as well as the Riverbend Green Energy Hub, High-Tech Manufacturing Innovation Hub, and Medical Innovation and Commercialization Hub, all in Buffalo.

For more information, please click here

Contacts:
Jerry Gretzinger
CNSE VP
Strategic Communications and Public Relations
(518) 956-7359

Copyright © SUNY College of Nanoscale Science and Engineering (CNSE)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To view the published research article, please visit:

To read more about this game-changing research, please visit:

To view news coverage by the Albany Times Union, please visit:

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Imaging

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Tools

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic