Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Big in small things: Physicists of Kiel University are the first to move an atom inside a crystal and investigate its function

The first to move an atom inside a crystal: Alexander Weismann and Hao Zheng in front of the scanning tunneling microscope
Photo/Copyright: Wimber/CAU
The first to move an atom inside a crystal: Alexander Weismann and Hao Zheng in front of the scanning tunneling microscope

Photo/Copyright: Wimber/CAU

Abstract:
Nanotechnology is a thriving science. Parts for computers for example are becoming smaller and more precise by the minute. One of the most efficient computers would be the so-called quantum computer. Up to now, its existence has been merely a concept that is based on the laws of quantum mechanics. Here, the ability to control the state of single atoms is decisive. For the first time ever, scientists of Kiel University have managed to move single atoms vertically inside a crystal. This is important for the further development of nano structures. Simultaneously, the physicists found a method for measuring a transistor-like behaviour of single atoms. These findings have recently been published in the scientific magazine Nature Communications (January, 3rd, 2014) as well as in the renowned Physical Review Letters.

Big in small things: Physicists of Kiel University are the first to move an atom inside a crystal and investigate its function

Kiel, Germany | Posted on January 28th, 2014

When manufacturing nano structures, the understanding, analysing and handling of materials present major challenges. A widely used and investigated material for piezo-, micro-, and optoelectronic devices is zinc oxide (ZnO). As a semiconductor it is built into light-emitting diodes (LED) and LCD-displays. Also, it is used as nanowires in electrical measurement technology. Some of its properties - such as the conductivity of the pure material - have to date not been understood. A major step towards solving this mystery was recently made by Dr. Hao Zheng, Dr. Alexander Weismann and Professor Richard Berndt of the Institute of Experimental and Applied Physics at Kiel University. While experimenting at the Collaborative Research Center "Magnetoelectric Composites - Future Biomagnetic Interfaces", Zheng was analysing zinc oxide with the scanning tunnelling microscope (STM). This device is able to image crystals on an atomic scale. He discovered circular structures in the otherwise irregular surface. "We found that they are a result of zinc atoms that were incorrectly positioned in the crystal lattice", says Zheng.

Each of the discovered atoms featured two rings - a clear proof that it can donate two electrons. "We studied all scientific literature to find out that no-one had so far proven why zinc oxide is conductive. The logical conclusion was that the reason must lie within the newly found zinc atoms, which are naturally occurring in this material."

Further research led Dr. Zheng to discover that the ring's size could be varied while being exposed to experiments in the scanning tunnelling microscope. He asked for the help of his colleague Weismann, who is an expert for model calculation. "The calculation hinted that the diameter of the ring revealed something about the depth of the atoms below the surface", says Weismann. With this it was clear that Zheng had discovered a way to change the position of an atom by a single atom's width. "This is the first time a single atom is controllably moved within a crystal with atomic precision", Weismann stresses. "This ability will be helpful when designing nano structures in laboratories."

Along with their other findings, the scientists of Kiel University noted a behaviour that was similar to that of transistors. This component, which is used in computers by the million, usually requires three contact electrodes. When working with nano structures such as atoms, which measure only 0.3 nanometers, three electrodes would inevitably cause a short-circuit. "With the help of the STM we have discovered a method that only needs two electrodes, one of which is movable." This also is a major step for the handling of nano structures.

The study was financially supported by the Collaborative Research Center 855 "Magnetoelectric Composites - Future Biomagnetic Interfaces".

####

About Christian-Albrechts-Universitaet zu Kiel
When Duke Christian Albrecht of Holstein-Gottorp decided to found a university in 1665, the Thirty Years' War was over. The State required well-educated young men for service to government, who were to graduate from the new university. 140 students enrolled in the initially established faculties of Theology, Law, Medicine and Philosophy.

The University currently teaches over 24,000 women and men and the range of subjects on offer is spread over eight faculties. In addition to the original faculties, the faculties of Agricultural and Nutritional Science, Mathematics and Natural Sciences, Business, Economics and Social Sciences and, the newest faculty, the Faculty of Engineering are integrated into the university. Where once Max Planck and Heinrich Hertz worked, around 700 academics now pass on their knowledge to students from Germany and across the Globe.

For more information, please click here

Contacts:
Boris Pawlowski


Dr. Alexander Weismann
Kiel University
Institute of Experimental and Applied Physics
Phone: 0431/880-3966


Text:
Ann-Christin Wimber
Redaktionsbüro Alte Schule
www.alte-schule.info

Kiel University
Press, Communication and Marketing
Dr. Boris Pawlowski
text: Ann-Christin Wimber (Redaktionsbüro Alte Schule)
editor: Claudia Eulitz
Address: D-24098 Kiel, phone: +49 (0431) 880-2104
fax: +49 (0431) 880-1355

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project