Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA-built nanostructures safely target, image cancer tumors

Professor Warren ChanPhoto by Martin Lipman/Lipman Still Pictures courtesy of Natural Sciences and Engineering Research Council of Canada
Professor Warren Chan

Photo by Martin Lipman/Lipman Still Pictures courtesy of Natural Sciences and Engineering Research Council of Canada

Abstract:
A team of researchers at the University of Toronto has discovered a method of assembling "building blocks" of gold nanoparticles as the vehicle to deliver cancer medications or cancer-identifying markers directly into cancerous tumors. The study, led by Warren Chan, Professor at the Institute of Biomaterials & Biomedical Engineering (IBBME) and the Donnelly Centre for Cellular & Biomolecular Research (CCBR), appears in an article in Nature Nanotechnology this week.

DNA-built nanostructures safely target, image cancer tumors

Toronto, Canada | Posted on January 27th, 2014

A team of researchers at the University of Toronto has discovered a method of assembling "building blocks" of gold nanoparticles as the vehicle to deliver cancer medications or cancer-identifying markers directly into cancerous tumors. The study, led by Warren Chan, Professor at the Institute of Biomaterials & Biomedical Engineering (IBBME) and the Donnelly Centre for Cellular & Biomolecular Research (CCBR), appears in an article in Nature Nanotechnology this week.

"To get materials into a tumor they need to be a certain size," explains Chan. "Tumors are characterized by leaky vessels with holes roughly 50 - 500 nanometers in size, depending on the tumor type and stage. The goal is to deliver particles small enough to get through the holes and 'hang out' in the tumor's space for the particles to treat or image the cancer. If particle is too large, it can't get in, but if the particle is too small, it leaves the tumor very quickly."

Chan and his researchers solved this problem by creating modular structures 'glued' together with DNA. "We're using a 'molecular assembly' model - taking pieces of materials that we can now fabricate accurately and organizing them into precise architectures, like putting LEGO blocks together," cites Leo Chou, a 5th year PhD student at IBBME and first author of the paper. Chou was awarded a 2012-13 Canadian Breast Cancer Foundation Ontario Region Fellowship for his work with nanotechnology.

"The major advantage of this design strategy is that it is highly modular, which allows you to 'swap' components in and out. This makes it very easy to create systems with multiple functions, or screen a large library of nanostructures for desirable biological behaviors," he states.

The long-term risk of toxicity from particles that remain in the body, however, has been a serious challenge to nanomedical research.

"Imagine you're a cancer patient in your 30s," describes Chan. "And you've had multiple injections of these metal particles. By the time you're in your mid-40s these are likely to be retained in your system and could potentially cause other problems."

DNA, though, is flexible, and over time, the body's natural enzymes cause the DNA to degrade, and the assemblage breaks apart. The body then eliminates the smaller particles safely and easily.

But while the researchers are excited about this breakthrough, Chan cautions that a great deal more needs to be known.

"We need to understand how DNA design influences the stability of things, and how a lack of stability might be helpful or not," he argues.

"The use of assembly to build complex and smart nanotechnology for cancer applications is still in the very primitive stage of development. Still, it is very exciting to be able to see and test the different nano-configurations for cancer applications," Chan adds.

###

The project was funded by CIHR, NSERC, CBCF, and CFI.

####

About University of Toronto
The Institute of Biomaterials and Biomedical Engineering (IBBME) is a cutting-edge interdisciplinary unit situated between three Faculties at the University of Toronto: Applied Science and Engineering, Dentistry and Medicine. The Institute pursues research in four areas: neural, sensory systems and rehabilitation engineering; biomaterials, tissue engineering and regenerative medicine; molecular imaging and biomedical nanotechnology; medical devices and clinical technologies.

For more information, please click here

Contacts:
Erin Vollick

416-946-8019

Copyright © University of Toronto

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Nanomedicine

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

2015 Nanonics Image Contest January 29th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE