Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA-built nanostructures safely target, image cancer tumors

Professor Warren ChanPhoto by Martin Lipman/Lipman Still Pictures courtesy of Natural Sciences and Engineering Research Council of Canada
Professor Warren Chan

Photo by Martin Lipman/Lipman Still Pictures courtesy of Natural Sciences and Engineering Research Council of Canada

Abstract:
A team of researchers at the University of Toronto has discovered a method of assembling "building blocks" of gold nanoparticles as the vehicle to deliver cancer medications or cancer-identifying markers directly into cancerous tumors. The study, led by Warren Chan, Professor at the Institute of Biomaterials & Biomedical Engineering (IBBME) and the Donnelly Centre for Cellular & Biomolecular Research (CCBR), appears in an article in Nature Nanotechnology this week.

DNA-built nanostructures safely target, image cancer tumors

Toronto, Canada | Posted on January 27th, 2014

A team of researchers at the University of Toronto has discovered a method of assembling "building blocks" of gold nanoparticles as the vehicle to deliver cancer medications or cancer-identifying markers directly into cancerous tumors. The study, led by Warren Chan, Professor at the Institute of Biomaterials & Biomedical Engineering (IBBME) and the Donnelly Centre for Cellular & Biomolecular Research (CCBR), appears in an article in Nature Nanotechnology this week.

"To get materials into a tumor they need to be a certain size," explains Chan. "Tumors are characterized by leaky vessels with holes roughly 50 - 500 nanometers in size, depending on the tumor type and stage. The goal is to deliver particles small enough to get through the holes and 'hang out' in the tumor's space for the particles to treat or image the cancer. If particle is too large, it can't get in, but if the particle is too small, it leaves the tumor very quickly."

Chan and his researchers solved this problem by creating modular structures 'glued' together with DNA. "We're using a 'molecular assembly' model - taking pieces of materials that we can now fabricate accurately and organizing them into precise architectures, like putting LEGO blocks together," cites Leo Chou, a 5th year PhD student at IBBME and first author of the paper. Chou was awarded a 2012-13 Canadian Breast Cancer Foundation Ontario Region Fellowship for his work with nanotechnology.

"The major advantage of this design strategy is that it is highly modular, which allows you to 'swap' components in and out. This makes it very easy to create systems with multiple functions, or screen a large library of nanostructures for desirable biological behaviors," he states.

The long-term risk of toxicity from particles that remain in the body, however, has been a serious challenge to nanomedical research.

"Imagine you're a cancer patient in your 30s," describes Chan. "And you've had multiple injections of these metal particles. By the time you're in your mid-40s these are likely to be retained in your system and could potentially cause other problems."

DNA, though, is flexible, and over time, the body's natural enzymes cause the DNA to degrade, and the assemblage breaks apart. The body then eliminates the smaller particles safely and easily.

But while the researchers are excited about this breakthrough, Chan cautions that a great deal more needs to be known.

"We need to understand how DNA design influences the stability of things, and how a lack of stability might be helpful or not," he argues.

"The use of assembly to build complex and smart nanotechnology for cancer applications is still in the very primitive stage of development. Still, it is very exciting to be able to see and test the different nano-configurations for cancer applications," Chan adds.

###

The project was funded by CIHR, NSERC, CBCF, and CFI.

####

About University of Toronto
The Institute of Biomaterials and Biomedical Engineering (IBBME) is a cutting-edge interdisciplinary unit situated between three Faculties at the University of Toronto: Applied Science and Engineering, Dentistry and Medicine. The Institute pursues research in four areas: neural, sensory systems and rehabilitation engineering; biomaterials, tissue engineering and regenerative medicine; molecular imaging and biomedical nanotechnology; medical devices and clinical technologies.

For more information, please click here

Contacts:
Erin Vollick

416-946-8019

Copyright © University of Toronto

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanomedicine

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Discoveries

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Personal cooling units on the horizon April 29th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations April 21st, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

Nano-magnets produce 3-dimensional images: Wide-view 3-dimensional holographic display composed of nano-magnetic pixels April 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic