Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Molecules as circuits

Credits: Simplificamos Su Trabajo (bit.ly/1dyDQOk)
Credits: Simplificamos Su Trabajo (bit.ly/1dyDQOk)

Abstract:
Silicon-based electronics has certain limits, in the physical sense of the word: this type of circuit can never become "nano" because of the physical laws governing the flow of electrons. This imposes a halt to the process of miniaturization of electronic devices. One of the possible solutions is to use molecules as circuits, but their poor conduction capabilities make them unlikely candidates. There is, however, a possible way around this, which was investigated in a recent paper published in Proceedings of the National Academy of Sciences (PNAS) by an international research team that includes Ryan Requist, Erio Tosatti and Michele Fabrizio of the International School for Advanced Studies (SISSA) in Trieste.

Molecules as circuits

Trieste, Italy | Posted on January 23rd, 2014

The Kondo effect, first described last century by the Japanese physicist Jun Kondo, is observed when magnetic impurities, i.e., very few atoms (even only 1 in 1000) of magnetic material such as iron are added to metals like gold or copper. Even molecules like nitric oxide behave like magnetic impurities: when located between metal electrodes they give rise to a Kondo effect. This effect, as the study authors show, could be exploited to change the conductance between the two electrodes. Requist and Tosatti created a computer model of the Kondo effect under these conditions and formulated predictions on the behaviour of the molecules. These were then tested in experiments carried out by the experimental physicists involved in the study.

The results are encouraging: "Our work demonstrates for the first time that we can predict the Kondo effect quantitatively and it offers a theoretical basis for similar calculations with larger and more complex molecules. In the future it might be helpful when searching for the most appropriate molecules for these purposes", commented Requist.

The research collaboration that carried out the study saw the participation of SISSA, CNR-IOM Democritos, ICTP, the University of Trieste, the University of Technology of Dresden and the French Alternative Energies and Atomic Energy Commission (CEA).

More in detailÖ

The Kondo effect occurs when the presence of a magnetic atom (an impurity) causes the movement of electrons in a material to behave in a peculiar way.

"Every electron has a mechanical or magnetic rotation moment, termed spin", explains Erio Tosatti. "Kondo is a phenomenon related to the spin of metal electrons when they encounter a magnetic impurity. The free metal electrons cluster around the impurity and "screen it out" so that it can no longer be detected, at least so long as the temperature is sufficiently low". This results in specific properties of the material, for example an increase in electrical resistance.

"Conversely, in conditions involving very small size scales (the tip of a tunnelling electron microscope) such as those used in this study, the result is instead an increase in conductivity", explains Requist.

####

For more information, please click here

Contacts:
Federica Sgorbissa

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

Imaging

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Chip Technology

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

New TriboLab CMP Provides Cost-Effective Characterization of Chemical Mechanical Wafer Polishing Processes: Bruker Updates Industry-Standard CP-4 Platform for Most Flexible and Reliable Testing June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Discoveries

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Tools

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

New TriboLab CMP Provides Cost-Effective Characterization of Chemical Mechanical Wafer Polishing Processes: Bruker Updates Industry-Standard CP-4 Platform for Most Flexible and Reliable Testing June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project