Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > When nanotechnology meets quantum physics in one dimension: New experiment supports long-predicted "Luttinger liquid" model

Abstract:
How would electrons behave if confined to a wire so slender they could pass through it only in single-file?

The question has intrigued scientists for more than half a century. In 1950, Japanese Nobel Prize winner Sin-Itiro Tomonaga, followed by American physicist Joaquin Mazdak Luttinger in 1963, came up with a mathematical model showing that the effects of one particle on all others in a one-dimensional line would be much greater than in two- or three-dimensional spaces. Among quantum physicists, this model came to be known as the "Luttinger liquid" state.

When nanotechnology meets quantum physics in one dimension: New experiment supports long-predicted "Luttinger liquid" model

Montreal, Canada | Posted on January 23rd, 2014

Until very recently, however, there had been only a few successful attempts to test the model in devices similar to those in computers, because of the engineering complexity involved. Now, scientists from McGill University and Sandia National Laboratories have succeeded in conducting a new experiment that supports the existence of the long-sought-after Luttinger liquid state. Their findings, published in the Jan. 23 issue of Science Express, validate important predictions of the Luttinger liquid model.

The experiment was led by McGill PhD student Dominique Laroche under the supervision of Professor Guillaume Gervais of McGill's Department of Physics and Dr. Michael Lilly of Sandia National Laboratories in Albuquerque, N.M. The new study follows on the team's discovery in 2011 of a way to engineer one of the world's smallest electronic circuits, formed by two wires separated by only about 15 nanometers, or roughly 150 atoms.

What does one-dimensional quantum physics involve? Gervais explains it this way: "Imagine that you are driving on a highway and the traffic is not too dense. If a car stops in front of you, you can get around it by passing to the left or right. That's two-dimensional physics. But if you enter a tunnel with a single lane and a car stops, all the other cars behind it must slam on the brakes. That's the essence of the Luttinger liquid effect. The way electrons behave in the Luttinger state is entirely different because they all become coupled to one another."

To scientists, "what is so fascinating and elegant about quantum physics in one dimension is that the solutions are mathematically exact," Gervais adds. "In most other cases, the solutions are only approximate."

Making a device with the correct parameters to conduct the experiment was no simple task, however, despite the team's 2011 discovery of a way to do so.. It took years of trial, and more than 250 faulty devices - each of which required 29 processing steps - before Laroche's painstaking efforts succeeded in producing functional devices yielding reliable data. "So many things could go wrong during the fabrication process that troubleshooting the failed devices felt like educated guesswork at times," explains Laroche. "Adding in the inherent failure rate compounded at each processing step made the fabrication of these devices extremely challenging."

In particular, the experiment measures the effect that a very small electrical current in one of the wires has on a nearby wire. This can be viewed as the "friction" between the two circuits, and the experiment shows that this friction increases as the circuits are cooled to extremely low temperatures. This effect is a strong prediction of Luttinger liquid theory.

The experiments were conducted both at McGill University and at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility operated by Sandia National Laboratories.

"It took a very long time to make these devices," said Lilly. "It's not impossible to do in other labs, but Sandia has crystal-growing capabilities, a microfabrication facility, and support for fundamental research from DOE's office of Basic Energy Sciences (BES), and we're very interested in understanding the fundamental ideas that drive the behavior of very small systems."

The findings could lead to practical applications in electronics and other fields. While it's difficult at this stage to predict what those might be, "the same was true in the case of the laser when it was invented," Gervais notes. "Nanotechnologies are already helping us in medicine, electronics and engineering - and this work shows that they can help us get to the bottom of a long-standing question in quantum physics."

The research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; the Natural Sciences and Engineering Research Council of Canada (NSERC); the Canadian Institute for Advanced Research (CIFAR), and the Fonds québécois de la recherche sur la nature et les technologies (FQRNT).

####

About McGill University
Founded in Montreal, Que., in 1821, is Canada’s leading post-secondary institution. It has two campuses, 11 faculties, 10 professional schools, 300 programs of study and more than 35,000 students. McGill attracts students from more than 150 countries around the world. Almost half of McGill students claim a first language other than English – including 6,000 francophones – with more than 6,800 international students making up almost 20 per cent of the student body.

For more information, please click here

Contacts:
Chris Chipello
Media Relations
McGill University
514-398-4201


Prof. Guillaume Gervais
Department of Physics
McGill University

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Physics

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Research partnerships

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project