Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > When nanotechnology meets quantum physics in one dimension: New experiment supports long-predicted "Luttinger liquid" model

Abstract:
How would electrons behave if confined to a wire so slender they could pass through it only in single-file?

The question has intrigued scientists for more than half a century. In 1950, Japanese Nobel Prize winner Sin-Itiro Tomonaga, followed by American physicist Joaquin Mazdak Luttinger in 1963, came up with a mathematical model showing that the effects of one particle on all others in a one-dimensional line would be much greater than in two- or three-dimensional spaces. Among quantum physicists, this model came to be known as the "Luttinger liquid" state.

When nanotechnology meets quantum physics in one dimension: New experiment supports long-predicted "Luttinger liquid" model

Montreal, Canada | Posted on January 23rd, 2014

Until very recently, however, there had been only a few successful attempts to test the model in devices similar to those in computers, because of the engineering complexity involved. Now, scientists from McGill University and Sandia National Laboratories have succeeded in conducting a new experiment that supports the existence of the long-sought-after Luttinger liquid state. Their findings, published in the Jan. 23 issue of Science Express, validate important predictions of the Luttinger liquid model.

The experiment was led by McGill PhD student Dominique Laroche under the supervision of Professor Guillaume Gervais of McGill's Department of Physics and Dr. Michael Lilly of Sandia National Laboratories in Albuquerque, N.M. The new study follows on the team's discovery in 2011 of a way to engineer one of the world's smallest electronic circuits, formed by two wires separated by only about 15 nanometers, or roughly 150 atoms.

What does one-dimensional quantum physics involve? Gervais explains it this way: "Imagine that you are driving on a highway and the traffic is not too dense. If a car stops in front of you, you can get around it by passing to the left or right. That's two-dimensional physics. But if you enter a tunnel with a single lane and a car stops, all the other cars behind it must slam on the brakes. That's the essence of the Luttinger liquid effect. The way electrons behave in the Luttinger state is entirely different because they all become coupled to one another."

To scientists, "what is so fascinating and elegant about quantum physics in one dimension is that the solutions are mathematically exact," Gervais adds. "In most other cases, the solutions are only approximate."

Making a device with the correct parameters to conduct the experiment was no simple task, however, despite the team's 2011 discovery of a way to do so.. It took years of trial, and more than 250 faulty devices - each of which required 29 processing steps - before Laroche's painstaking efforts succeeded in producing functional devices yielding reliable data. "So many things could go wrong during the fabrication process that troubleshooting the failed devices felt like educated guesswork at times," explains Laroche. "Adding in the inherent failure rate compounded at each processing step made the fabrication of these devices extremely challenging."

In particular, the experiment measures the effect that a very small electrical current in one of the wires has on a nearby wire. This can be viewed as the "friction" between the two circuits, and the experiment shows that this friction increases as the circuits are cooled to extremely low temperatures. This effect is a strong prediction of Luttinger liquid theory.

The experiments were conducted both at McGill University and at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility operated by Sandia National Laboratories.

"It took a very long time to make these devices," said Lilly. "It's not impossible to do in other labs, but Sandia has crystal-growing capabilities, a microfabrication facility, and support for fundamental research from DOE's office of Basic Energy Sciences (BES), and we're very interested in understanding the fundamental ideas that drive the behavior of very small systems."

The findings could lead to practical applications in electronics and other fields. While it's difficult at this stage to predict what those might be, "the same was true in the case of the laser when it was invented," Gervais notes. "Nanotechnologies are already helping us in medicine, electronics and engineering - and this work shows that they can help us get to the bottom of a long-standing question in quantum physics."

The research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; the Natural Sciences and Engineering Research Council of Canada (NSERC); the Canadian Institute for Advanced Research (CIFAR), and the Fonds québécois de la recherche sur la nature et les technologies (FQRNT).

####

About McGill University
Founded in Montreal, Que., in 1821, is Canada’s leading post-secondary institution. It has two campuses, 11 faculties, 10 professional schools, 300 programs of study and more than 35,000 students. McGill attracts students from more than 150 countries around the world. Almost half of McGill students claim a first language other than English – including 6,000 francophones – with more than 6,800 international students making up almost 20 per cent of the student body.

For more information, please click here

Contacts:
Chris Chipello
Media Relations
McGill University
514-398-4201


Prof. Guillaume Gervais
Department of Physics
McGill University

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Physics

Superfast light source made from artificial atom April 28th, 2016

Physicists detect the enigmatic spin momentum of light April 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Discoveries

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Superfast light source made from artificial atom April 28th, 2016

Announcements

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Research partnerships

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Quantum nanoscience

The atom without properties April 22nd, 2016

Changing the color of single photons in a diamond quantum memory April 7th, 2016

New state of matter detected in a two-dimensional material April 6th, 2016

Scientists divide magnetic vortices into collectivists and individualists April 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic