Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researcher proves mass is important at the nano-scale, matters in calculations and measurements

Alan Bowling, assistant professor of mechanical and aerospace engineering
Alan Bowling, assistant professor of mechanical and aerospace engineering

Abstract:
A UT Arlington engineering professor has proven that the effect of mass is important, can be measured and has a significant impact on any calculations and measurements at the sub-micrometer scale.

Researcher proves mass is important at the nano-scale, matters in calculations and measurements

Arlington, TX | Posted on January 22nd, 2014

The findings help to better understand movement of nano-sized objects in fluid environments that can be characterized by a low Reynolds number, which often occurs in biological systems. The unconventional results are consistent with Newton's Second Law of Motion, a well-established law of physics, and imply that mass should be included in the dynamic model of these nano-systems. The most widely accepted models omit mass at that scale.

Alan Bowling, an assistant professor of mechanical and aerospace engineering, collaborated with Samarendra Mohanty, an assistant physics professor, and doctoral students Mahdi Haghshenas-Jaryani, Bryan Black and Sarvenaz Ghaffari, as well as graduate student James Drake to make the discovery.

A key advantage of the new model is that it can be used to build computer simulations of nano-sized objects that have drastically reduced run times as compared to a conventional model based on Newton's second law. These conventional models have run times of days, weeks, months and years while the new model requires only seconds or minutes to run.

In the past, researchers attempted to address the long run time by omitting the mass terms in the model. This resulted in faster run times but, paradoxically, violated Newton's second law upon which the conventional model was based. The remedy for this paradox was to argue that mass was unimportant at the nano-scale.

However, the new model retains mass, and predicts unexpected motion of nano-sized objects in a fluid that has been experimentally observed. The new model also runs much faster than both the conventional and massless models.

It is expected that this new model will significantly accelerate research involving small-scale phenomena.

Research areas that Bowling and collaborators at UT Arlington are currently investigating include cell migration, protein function, bionic medical devices and nanoparticle suspensions for storing thermal energy. However, the applications for the computer simulation in medicine, biology, and other fields are endless.

Khosrow Behbehani, dean of the College of Engineering, said the team's findings may alter ways of thinking throughout the engineering and scientific worlds.

"The paper is only the beginning for this research," Behbehani said. "I anticipate a high level of interest in the findings. It could transform the way we conduct research in nano-engineering by providing researchers with the ability to study such physical phenomena at such small scale through the model."

The team used optical tweezers previously developed by Mohanty to measure oscillations that occur at the nano scale, thus proving that mass and acceleration must be considered at that level as well.

"We proved it in the lab," Bowling said. "Publication in an accepted journal is the next step in gaining mass acceptance of the idea, which flies in the face of what most people believe now."

The discovery resulted from a 2012 National Science Foundation grant project in which the UT Arlington team investigated a new model for how motor proteins behave in the body. The NSF award was funded through the Early Concept Grants for Exploratory Research, or EAGER program. The grants support exploratory work in its early stages on untested, but potentially transformative, research ideas or approaches.

####

About University of Texas at Arlington
The University of Texas at Arlington is a comprehensive research institution of more than 33,300 students and 2,300 faculty members in the epicenter of North Texas. It is the second largest institution in the University of Texas System. Research expenditures reached almost $78 million last year. Visit www.uta.edu for more information.

For more information, please click here

Contacts:
Herb Booth

817-272-7075

Copyright © University of Texas at Arlington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research is detailed in the paper “Dynamics of Microscopic Objects in Optical Tweezers: Experimental Determination of Underdamped Regime and Numerical Simulation using Multiscale Analysis” and published online by the Journal of Non-Linear Dynamics. The paper is scheduled for publication in the journal’s print version later this year:

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A new technique to make drugs more soluble August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

How UEA research could help build computers from DNA August 19th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Exercise-induced hormone irisin is not a 'myth' August 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic