Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Atomic-Scale Catalysts May Produce Cheap Hydrogen

Researchers found MoS2 thin films are effective catalysts for hydrogen production.
Researchers found MoS2 thin films are effective catalysts for hydrogen production.

Abstract:
"Layer-dependent Electrocatalysis of MoS2 for Hydrogen Evolution"

Authors: Yifei Yu, Shengyang Huang, Yanpeng Li, and Linyou Cao, North Carolina State University; Stephan Steinmann and Weitao Yang, Duke University

Published: Jan. 16, 2014, Nano Letters

DOI: 10.1021/nl403620g

Abstract: The quantitative correlation of the catalytic activity with microscopic structure of heterogeneous catalysts is a major challenge for the field of catalysis science. It requests synergistic capabilities to tailor the structure with atomic scale precision and to control the catalytic reaction to proceed through well-defined pathways. Here we leverage on the controlled growth of MoS2 atomically thin films to demonstrate that the catalytic activity of MoS2 for the hydrogen evolution reaction decreases by a factor of ~4.47 for the addition of every one more layer. Similar layer dependence is also found in edge-riched MoS2 pyramid platelets. This layer-dependent electrocatalysis can be correlated to the hopping of electrons in the vertical direction of MoS2 layers over an interlayer potential barrier. Our experimental results suggest the potential barrier to be 0.119V, consistent with theoretical calculations. Different from the conventional wisdom, which thinks that the number of edge sites is important, our results suggest that increasing the hopping efficiency of electrons in the vertical direction is a key for the development of high-efficiency two-dimensional material catalysts.

Atomic-Scale Catalysts May Produce Cheap Hydrogen

Raleigh, NC | Posted on January 22nd, 2014

Researchers at North Carolina State University have shown that a one-atom thick film of molybdenum sulfide (MoS2) may work as an effective catalyst for creating hydrogen. The work opens a new door for the production of cheap hydrogen.

Hydrogen holds great promise as an energy source, but the production of hydrogen from water electrolysis - freeing hydrogen from water with electricity - currently relies in large part on the use of expensive platinum catalysts. The new research shows that MoS2 atomically thin films are also effective catalysts for hydrogen production and - while not as efficient as platinum - are relatively inexpensive. (A Q&A with Cao on how this research differs from earlier studies of other catalysts for hydrogen production can be found on NC State's research blog.)

"We found that the thickness of the thin film is very important," says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper describing the work. "A thin film consisting of a single layer of atoms was the most efficient, with every additional layer of atoms making the catalytic performance approximately five times worse."

The effect of the thin films' thickness came as a surprise to researchers, because it has long been thought that catalysis normally takes place along the edges of the material. Because thin films have very little ‘edge,' conventional wisdom held that thin films were essentially catalytically inactive.

But the researchers discovered that a material's thickness is important because the thinner the MoS2 thin film is, the more conductive it becomes - and the more conductive it becomes, the more effective it is as a catalyst.

"The focus has been on creating catalysts with a large ‘edge' side," Cao says. "Our work indicates that researchers may want to pay more attention to a catalyst's conductivity."

Cao developed the technique for creating high-quality MoS2 thin films at the atomic scale in 2013. The current production of hydrogen from the atomically thin film is powered by electricity. His team is working to develop a solar-powered water-splitting device that uses the MoS2 thin films to create hydrogen.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386


Dr. Linyou Cao
919.515.5407

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Layer-dependent Electrocatalysis of MoS2 for Hydrogen Evolution,” is published online in Nano Letters. Lead author of the paper is Yifei Yu, a Ph.D. student at NC State. Co-authors include Yanpeng Li, a Ph.D. student at NC State; Dr. Shengyang Huang, a former visiting scholar at NC State; and Drs. Stephan Steinmann and Weitao Yang of Duke University. The research was supported by U.S. Army Research Office grant W911NF-13-1-0201:

Related News Press

News and information

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Chemistry

In-cell molecular sieve from protein crystal February 14th, 2017

Nano-level lubricant tuning improves material for electronic devices and surface coatings February 11th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Thin films

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Discoveries

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Announcements

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Energy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

Automotive/Transportation

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project