Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > From a carpet of nanorods to a thin film solar cell absorber within a few seconds

The transformation from a layer of closely packed nanorods (top left) to a polycrystalline semiconductor thin film (top right) can be observed in by in-situ X-ray diffraction in real time. The intensities of the diffraction signals are color coded in the image at the bottom. A detailed analysis of the signals reveals that the transformation of the nanorods into kesterite crystals takes only 9 to 18 seconds.

Picture: R. Mainz/A. Singh
The transformation from a layer of closely packed nanorods (top left) to a polycrystalline semiconductor thin film (top right) can be observed in by in-situ X-ray diffraction in real time. The intensities of the diffraction signals are color coded in the image at the bottom. A detailed analysis of the signals reveals that the transformation of the nanorods into kesterite crystals takes only 9 to 18 seconds.

Picture: R. Mainz/A. Singh

Abstract:
Research teams at the HZB and at the University of Limerick, Ireland, have discovered a novel solid state reaction which lets kesterite grains grow within a few seconds and at relatively low temperatures. For this reaction they exploit a transition from a metastable wurtzite compound in the form of nanorods to the more stable kesterite compound. At the EDDI Beamline at BESSY II, the scientists could observe this process in real-time when heating the sample: in a few seconds Kesterite grains formed. The size of the grains was found to depend on the heating rate. With fast heating they succeeded in producing a Kesterite thin film with near micrometer-sized crystal grains, which could be used in thin film solar cells. These findings have now been published in the journal "Nature Communications".

From a carpet of nanorods to a thin film solar cell absorber within a few seconds

Berlin, Germany | Posted on January 22nd, 2014

Grain formation during growth of kesterite solar cells observed in real-time
As starting material for the formation of the kesterite film serves a "carpet of nanorods": With the help of solution-based chemical processing, the chemists around Ajay Singh and Kevin Ryan at the University of Limerick have fabricated films of highly ordered wurtzite nanorods, which have exactly the same composition as kesterite Cu2ZnSnS4. With the help of real-time X-ray diffraction at the EDDI beamline of BESSY II, HZB physicists around Roland Mainz and Thomas Unold could now observe how a phase transition from the metastable wurtzite phase to the stable kesterite phase leads to a rapid formation of a thin film with large kesterite grains. "It is interesting to see that the complete formation of the kesterite film is so fast", says Mainz. And the faster the samples are heated up, the larger the grains grow. Mainz explains that at low heating rate, the transition from wurtzite to kesterite starts at lower temperature at which many small grains form - instead of a few larger grains. Additionally, more defects are formed at lower temperatures. During fast heating, the transition takes place at higher temperature at which grains with less defects form.

Moreover, the comparison of the time-resolved evolution of the phase transition during slow and during fast heating shows that not only the grain growth is triggered by the phase transition, but also the phase transition is additionally accelerated by the grain growth. The HZB physicists have developed a model which can explain these findings. By means of numerical model calculations, they demonstrated the accordance of the model with the measured data.

Novel synthesis pathway for thin film semiconductors with controlled morphology
The work points towards a new pathway for the fabrication of thin microcrystalline semiconductor films without the need of expensive vacuum technology. Cu2ZnSnS4-based kesterite semiconductors have gained increasing attention in the past, since they are a promising alternative for the Cu(In,Ga)Se2 chalcopyrite solar cells which already achieved efficiencies above 20%. Kesterite has similar physical properties as the chalcopyrite semiconductors, but consist only of elements which are abundantly present in the earth crust. The new procedure could also be interesting for the fabrication of micro- and nanostructured photoelectric devices as well as for semiconductor layers consisting of other materials, says Mainz. "But we continue to focus on kesterites, because this is a really exciting topic at the moment."

####

For more information, please click here

Contacts:
Dr. Roland Mainz

49-030-806-242-737
49-(030) 8062 - 42931 fax

Dr. Thomas Unold
Tel 49 (030) 8062 - 42048
Fax 49 (030) 8062 - 42931 mail


Press Office
Dr. Antonia Rötger
Tel 49 (030) 8062 - 43733
Fax 49 (030) 8062 - 42998

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results have been published in Nature communications doi: 10.1038/ncomms4133:

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Thin films

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Nanomechanics Inc. President Warren Oliver, PhD to Present at ICMCTF: Nanoindentation experts will discuss new testing system that measures the interaction of two objects that are sliding across each other – not merely making contact April 17th, 2017

Discoveries

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Solar/Photovoltaic

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project