Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Toward fixing damaged hearts through tissue engineering

Scientists report building heart tissue that can transmit electrical signals, a key function of cardiac muscle.
Credit: Emir Simsek/iStock/Thinkstock
Scientists report building heart tissue that can transmit electrical signals, a key function of cardiac muscle.

Credit: Emir Simsek/iStock/Thinkstock

Abstract:
In the U.S., someone suffers a heart attack every 34 seconds — their heart is starved of oxygen and suffers irreparable damage. Engineering new heart tissue in the laboratory that could eventually be implanted into patients could help, and scientists are reporting a promising approach tested with rat cells. They published their results on growing cardiac muscle using a scaffold containing carbon nanofibers in the ACS journal Biomacromolecules.

Toward fixing damaged hearts through tissue engineering

Washington, DC | Posted on January 22nd, 2014

Gordana Vunjak-Novakovic, Rui L. Reis, Ana Martins and colleagues point out that when damaged, adult heart tissue can't heal itself very well. The only way to fix an injured heart is with a transplant. But within the past decade, interest in regenerating just the lost tissue has surged. The trick is to find materials that, among other things, are nontoxic, won't get attacked by the body's immune system and allow for muscle cells to pass the electrical signals necessary for the heart to beat. Previous research has found that chitosan, which is obtained from shrimp and other crustacean shells, nearly fits the bill. In lab tests, scientists have used it as a scaffold for growing heart cells. But it doesn't transmit electrical signals well. Vunjak-Novakovic's team decided to build on the chitosan development and coax it to function more like a real heart.

To the chitosan, they added carbon nanofibers, which can conduct electricity, and grew neonatal rat heart cells on the resulting scaffold. After two weeks, cells had filled all the pores and showed far better metabolic and electrical activity than with a chitosan scaffold alone. The cells on the chitosan/carbon scaffold also expressed cardiac genes at higher levels.

###

The authors acknowledge funding from Fundação para a Ciência e Tecnologia, POPH-QREN—Advanced Formation, the European Social Fund, the National Fund and the National Institutes of Health. The work was a collaboration between Columbia University and 3B´s - University of Minho, Portugal.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Gordana Vunjak-Novakovic, Ph.D.
Biomedical Engineering and Medical Sciences
Columbia University
622 West 168th Street, VC12-234
New York, N.Y. 10032


General Inquiries:
Michael Bernstein

202-872-6042

Science Inquiries:
Katie Cottingham, Ph.D.

301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL-TEXT ARTICLE - “Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering”

Related News Press

News and information

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Discoveries

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Announcements

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Alliances/Trade associations/Partnerships/Distributorships

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

Leti Announces EU/South Korean Project for World’s First 5G-system Prototype: Coinciding with the 2018 Winter Games in PyeongChang, Korea, Prototype Will Be First Time State-of-the-art Terrestrial Wireless Communication Is Seamlessly Combined with Disruptive Satellite Communicati April 4th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Research partnerships

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project