Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Toward fixing damaged hearts through tissue engineering

Scientists report building heart tissue that can transmit electrical signals, a key function of cardiac muscle.
Credit: Emir Simsek/iStock/Thinkstock
Scientists report building heart tissue that can transmit electrical signals, a key function of cardiac muscle.

Credit: Emir Simsek/iStock/Thinkstock

Abstract:
In the U.S., someone suffers a heart attack every 34 seconds — their heart is starved of oxygen and suffers irreparable damage. Engineering new heart tissue in the laboratory that could eventually be implanted into patients could help, and scientists are reporting a promising approach tested with rat cells. They published their results on growing cardiac muscle using a scaffold containing carbon nanofibers in the ACS journal Biomacromolecules.

Toward fixing damaged hearts through tissue engineering

Washington, DC | Posted on January 22nd, 2014

Gordana Vunjak-Novakovic, Rui L. Reis, Ana Martins and colleagues point out that when damaged, adult heart tissue can't heal itself very well. The only way to fix an injured heart is with a transplant. But within the past decade, interest in regenerating just the lost tissue has surged. The trick is to find materials that, among other things, are nontoxic, won't get attacked by the body's immune system and allow for muscle cells to pass the electrical signals necessary for the heart to beat. Previous research has found that chitosan, which is obtained from shrimp and other crustacean shells, nearly fits the bill. In lab tests, scientists have used it as a scaffold for growing heart cells. But it doesn't transmit electrical signals well. Vunjak-Novakovic's team decided to build on the chitosan development and coax it to function more like a real heart.

To the chitosan, they added carbon nanofibers, which can conduct electricity, and grew neonatal rat heart cells on the resulting scaffold. After two weeks, cells had filled all the pores and showed far better metabolic and electrical activity than with a chitosan scaffold alone. The cells on the chitosan/carbon scaffold also expressed cardiac genes at higher levels.

###

The authors acknowledge funding from Fundação para a Ciência e Tecnologia, POPH-QREN—Advanced Formation, the European Social Fund, the National Fund and the National Institutes of Health. The work was a collaboration between Columbia University and 3B´s - University of Minho, Portugal.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Gordana Vunjak-Novakovic, Ph.D.
Biomedical Engineering and Medical Sciences
Columbia University
622 West 168th Street, VC12-234
New York, N.Y. 10032


General Inquiries:
Michael Bernstein

202-872-6042

Science Inquiries:
Katie Cottingham, Ph.D.

301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL-TEXT ARTICLE - “Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering”

Related News Press

News and information

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Discoveries

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Announcements

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Alliances/Trade associations/Partnerships/Distributorships

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Research partnerships

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

Artificial intelligence accelerates discovery of metallic glass: Machine learning algorithms pinpoint new materials 200 times faster than previously possible April 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project