Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Three Brookhaven Lab Physicists Named Fellows of the American Physical Society

David Jaffe, Qiang Li, David Morrison
David Jaffe, Qiang Li, David Morrison

Abstract:
Three scientists at the U.S. Department of Energy's Brookhaven National Laboratory--David Jaffe, Qiang Li, and David Morrison--have been named Fellows of the American Physical Society, the world's second largest organization of physicists. Election to APS Fellowship is limited to no more than one half of one percent of its membership in a given year, and election for this honor indicates recognition by scientific peers for exceptional contributions to physics. The contributions of each new Fellow are featured below.

Three Brookhaven Lab Physicists Named Fellows of the American Physical Society

Upton, NY | Posted on January 21st, 2014

David Jaffe, Physics Department
"For significant contributions to elucidating the flavor structure of the Standard Model through measurements on Kaons, B-mesons and neutrinos, including observation of K+??+?? in the low pion momentum region and observation of ?13 through reactor electron antineutrino disappearance."

The Standard Model of particle physics is the theory that identifies all known subatomic particles--including quarks, electrons, and neutrinos--and explains how they interact. The theory, however, does not explain some experimental results, and some of its theoretical predictions have not yet been observed.

Jaffe has made significant contributions to experiments looking for new physics beyond the Standard Model. As subatomic particles called kaons decayed during Experiment 949 at Brookhaven Lab's Alternating Gradient Synchrotron, Jaffe helped identify an extremely rare decay that occurs only 70 times in every trillion events--an important observation for investigating the Standard Model. At the Daya Bay Neutrino Experiment in China, Jaffe was instrumental in measuring ?13 (theta one-three), which quantifies the probability of tiny particles called neutrinos changing among three different "flavors" with different masses. The results of this experiment are guiding decisions as preparations continue for the proposed Long-Baseline Neutrino Experiment that will also explore physics beyond the Standard Model.

Jaffe, a resident of Riverhead, earned a Ph.D. in physics from Stony Brook University in 1987. He held postdoctoral research appointments at the University of Illinois-Chicago, Florida State University, LAL Orsay in France, and the University of California, San Diego, before joining Brookhaven Lab in 2000 and receiving tenure in 2010.

Qiang Li, Condensed Matter Physics and Materials Science Department
"For his contributions to both basic and applied aspects of high-temperature superconductivity."

Superconducting materials allow electricity to flow without any resistance or energy loss when cooled below a specific, transition temperature--often near a frigid absolute zero, -459 degrees Fahrenheit. Some superconductors have higher transition temperatures, but still require significant cooling, which hampers use in many large-scale practical applications.

At Brookhaven Lab, Li "tunes" chemical structures and defects in superconductors to understand how the materials' properties change. By advancing understanding of the relationships between superconductors' nanostructures and macroscopic properties, he develops superconductors with higher transition temperatures that can handle increasing amounts of electrical currents. Li is also facilitating the transfer of scientific discoveries to advanced applications as he leads efforts to develop superconductors for energy storage and superconducting wires for high-powered windmills.

Li, who lives in Setauket, joined Brookhaven Lab in 1991 after earning a Ph.D. in physics at Iowa State University. Also an adjunct professor at Stony Brook University, Li has been group leader for Brookhaven's Advanced Energy Materials Group since 2009 and received tenure at the Lab in 2011.

David Morrison, Physics Department
"For his scientific and technical contributions to Relativistic Heavy Ion Physics, determination of collision geometry and its effect on Quark Gluon Plasma observables, and his leadership on the PHENIX experiment at RHIC."

Scientists at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab smash together billions of ions in the hunt for clues about the origins of matter and mass in the universe. With the massive PHENIX and STAR detectors, scientists collect enormous quantities of data from the particle collisions at RHIC to study quark-gluon plasma--an ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protons and neutrons formed.

As a member of the PHENIX collaboration, Morrison helped devise techniques to determine the geometry of nuclear collisions at RHIC, distinguishing whether any given collision was head-on or merely a grazing blow. Identifying the geometry of each collision and correlating this with other measurements from the PHENIX detector is essential for interpreting data to understand more about quark-gluon plasma, its extremely low viscosity, and other unusual properties. Morrison is also collaborating on major new developments for the PHENIX detector in preparation for the proposed eRHIC, an electron-ion collider upgrade that would provide deeper insight into the substructure of the nucleus, its constituents--particularly quarks and gluons--and how they interact.

Morrison, a resident of Wading River, earned a Ph.D. in physics from Massachusetts Institute of Technology in 1994. He joined the PHENIX collaboration as a postdoctoral researcher at the University of Tennessee, Knoxville in 1994, before arriving at Brookhaven Lab in 1997. He received tenure at Brookhaven in 2004. Morrison was elected co-spokesperson for the PHENIX collaboration with Jamie Nagle of the University of Colorado in 2012.

This research is funded primarily by the DOE Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (www.bnl.gov/bnlweb/pubaf/pr/newsroom.asp), or follow Brookhaven Lab on Twitter: twitter.com/BrookhavenLab

For more information, please click here

Contacts:
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project