Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Turkeys inspire smartphone-capable early warning system for toxins

Bio-inspired sensors are made from bacteriophages that mimic the collagen fibers in turkey skin. When exposed to target chemicals, the collagen-like bundles expand or contract, generating different colors. The researchers also created a mobile app to be used with camera phones to help analyze the sensor's color bands.

Credit: Courtesy of the Seung-Wuk Lee Laboratory
Bio-inspired sensors are made from bacteriophages that mimic the collagen fibers in turkey skin. When exposed to target chemicals, the collagen-like bundles expand or contract, generating different colors. The researchers also created a mobile app to be used with camera phones to help analyze the sensor's color bands.

Credit: Courtesy of the Seung-Wuk Lee Laboratory

Abstract:
Some may think of turkeys as good for just lunch meat and holiday meals. But bioengineers at the University of California, Berkeley, saw inspiration in the big birds for a new type of biosensor that changes color when exposed to chemical vapors. This feature makes the sensors valuable detectors of toxins or airborne pathogens.

Turkeys inspire smartphone-capable early warning system for toxins

Berkeley, CA | Posted on January 21st, 2014

Turkey skin, it turns out, can shift from red to blue to white, thanks to bundles of collagen that are interspersed with a dense array of blood vessels. It is this color-shifting characteristic that gives turkeys the name "seven-faced birds" in Korean and Japanese.

The researchers say that spacing between the collagen fibers changes when the blood vessels swell or contract, depending upon whether the bird is excited or angry. The amount of swelling changes the way light waves are scattered and, in turn, alters the colors we see on the bird's head.

Seung-Wuk Lee, UC Berkeley associate professor of bioengineering, led a research team in mimicking this color-changing ability to create biosensors that can detect volatile chemicals.

"In our lab, we study how light is generated and changes in nature, and then we use what we learn to engineer novel devices," said Lee, who is also a faculty scientist at the Lawrence Berkeley National Laboratory.

The researchers created a mobile app, called the iColour Analyser, to show that a smartphone photo of the sensor's color bands could be used to help identify toxins of interest. They described their experiments in a study to be published Tuesday, Jan. 21, in the journal Nature Communications.

Sensors that give off color readings are easier to use and read than conventional biosensors. However, the major ones in development elsewhere can only detect a limited range of chemicals and, according to the researchers, they can be very difficult to manufacture.

"Our system is convenient, and it is cheap to make," said Lee. "We also showed that this technology can be adapted so that smartphones can help analyze the color fingerprint of the target chemical. In the future, we could potentially use this same technology to create a breath test to detect cancer and other diseases."

In copying this turkey-skin design, Lee and his team employed a technique they pioneered to mimic nanostructures like collagen fibers. The researchers found a way to get M13 bacteriophages, benign viruses with a shape that closely resembles collagen fibers, to self-assemble into patterns that could be easily fine-tuned.

The researchers found that, like collagen fibers, these phage-bundled nanostructures expanded and contracted, resulting in color changes. The exact mechanism behind the shrinking or expanding phage bundles is still unclear, but it's possible that the small amount of water in the phage is reacting to the chemical vapors, the researchers said.

The turkey-inspired biosensors were exposed to a range of volatile organic compounds, including hexane, isopropyl alcohol and methanol, as well as vapor of the explosive chemical TNT, at concentrations of 300 parts per billion. The researchers found that the viruses swelled rapidly, resulting in specific color patterns that served as "fingerprints" to distinguish the different chemicals tested.

The researchers showed that the biosensor's specificity to a target chemical could be increased by genetically engineering the DNA in the M13 bacteriophage to bind with sites specific to TNT. The biosensor was then exposed to two additional chemicals, DNT and MNT, which have similar molecular structures to TNT. The engineered biosensor successfully distinguished TNT from the other chemicals with distinct color bands.

The biosensors were also able to signal changes in relative humidity, ranging from 20 percent to 90 percent, becoming redder with moister air and bluer with drier air.

The study lead author is Jin-Woo Oh, a former postdoctoral researcher in Lee's lab and now an assistant professor in the Department of Nanomaterial Engineering at Pusan National University in South Korea.

The National Science Foundation, the Defense Acquisition Program Administration and Agency for Defense Development in South Korea, Korea's Ministry of Education, Science and Technology, and Samsung helped support this work.

####

For more information, please click here

Contacts:
Sarah Yang

510-643-7741

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Nanomedicine

Engineering self-assembling amyloid fibers January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Discoveries

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Fullerex launches 2015 edition of the Bulk Graphene Pricing Report January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Military

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Food/Agriculture/Supplements

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces presentation at nano tech 2015 in Japan January 21st, 2015

Research partnerships

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE