Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Highly Efficient Broadband Terahertz Radiation from Metamaterials

A THz spectrometer driven by femtosecond laser pulses was used to demonstrate THz emission from a split-ring resonator metamaterial
of single nanometer thickness.
A THz spectrometer driven by femtosecond laser pulses was used to demonstrate THz emission from a split-ring resonator metamaterial of single nanometer thickness.

Abstract:
Scientists at the U.S. Department of Energy's Ames Laboratory have demonstrated broadband terahertz (THz) wave generation using metamaterials. The discovery may help develop noninvasive imaging and sensing, and make possible THz-speed information communication, processing and storage. The results appeared in the Jan. 8 issue of Nature Communications.

Highly Efficient Broadband Terahertz Radiation from Metamaterials

Ames, IA | Posted on January 18th, 2014

Terahertz electromagnetic waves occupy a middle ground between electronics waves, like microwave and radio waves, and photonics waves, such as infrared and UV waves. Potentially, THz waves may accelerate telecom technologies and break new ground in understanding the fundamental properties of photonics. Challenges related to efficiently generating and detecting THz waves has primarily limited their use.

Traditional methods seek to either compress oscillating waves from the electronic range or stretch waves from the optical range. But when compressing waves, the THz frequency becomes too high to be generated and detected by conventional electronic devices. So, this approach normally requires either a large-scale electron accelerator facility or highly electrically-biased photoconductive antennas that produce only a narrow range of waves.

To stretch optical waves, most techniques include mixing two laser frequencies inside an inorganic or organic crystal. However, the natural properties of these crystals result in low efficiency.

So, to address these challenges, the Ames Laboratory team looked outside natural materials for a possible solution. They used man-made materials called metamaterials, which exhibit optical and magnetic properties not found in nature.

Costas Soukoulis, an Ames Laboratory physicist and expert in designing metamaterials, along with collaborators at Karlsruhe Institute of Technology in Germany, created a metamaterial made up of a special type of meta-atom called split-ring resonators. Split-ring resonators, because of their u-shaped design, display a strong magnetic response to any desired frequency waves in the THz to infrared spectrum.

Ames Laboratory physicist Jigang Wang, who specializes in ultra-fast laser spectroscopy, designed the femto-second laser experiment to demonstrate THz emission from the metamaterial of a single nanometer thickness.

"The combination of ultra-short laser pulses with the unique and unusual properties of the metamaterial generates efficient and broadband THz waves from emitters of significantly reduced thickness," says Wang, who is also an associate professor of Physics and Astronomy at Iowa State University.

The team demonstrated their technique using the wavelength used by telecommunications (1.5 microns), but Wang says that the THz generation can be tailored simply by tuning the size of the meta-atoms in the metamaterial.

"In principle, we can expand this technique to cover the entire THz range," said Soukoulis, who is also a Distinguished Professor of physics and astronomy at Iowa State University.

What's more, the team's metamaterial THz emitter measured only 40 nanometers and performed as well as traditional emitters that are thousands of times thicker.

"Our approach provides a potential solution to bridge the ‘THz technology gap' by solving the four key challenges in the THz emitter technology: efficiency; broadband spectrum; compact size; and tunability," said Wang.

Soukoulis, Wang, Liang Luo and Thomas Koschny's work at Ames Laboratory was supported by the U.S. Department of Energy's Office of Science. Wang's work is partially supported by Ames Laboratory's Laboratory Directed Research and Development (LDRD) funding.

####

About DOE/Ames Laboratory
Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

For more information, please click here

Contacts:
Breehan Gerleman Lucchesi

515-294-9750

Jigang Wang
Ames Laboratory
515-294-5630

Copyright © DOE/Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Imaging

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Wireless/telecommunications/RF/Antennas/Microwaves

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Laboratories

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Chip Technology

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Memory Technology

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

A powerful laser breakthrough: Lehigh research team demonstrates terahertz semiconductor laser with record-high output power May 2nd, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials March 21st, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Materials/Metamaterials

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Tools

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Research partnerships

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project