Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Production of Catalyst for Steam Reforming of Methane

Abstract:
Iranian researchers from Kashan University produced a catalyst based on magnesium oxide nano-crystals that in addition to having high activity and stability has very high resistance against carbon formation.

Production of Catalyst for Steam Reforming of Methane

Tehran, Iran | Posted on January 17th, 2014

Results of the research have application in various industries, including steel industry, production of syngas for reduction of iron oxide and production of sponge iron, petrochemical industries, and production of syngas as raw feed for the production of methanol, ammonia, acetic acid, and so forth.

In the first stage of the research, magnesium oxide with mesoporous structure, high specific area, and nanocrystalline properties was synthesized as the catalyst bed through deposition method. Next, the active part of nickel was inoculated with various weight percents on the catalyst bed. The synthesized catalysts were next subjected to characterization and reactor tests. Based on the obtained results, the catalyst with the optimum load was selected and the effect of reaction parameters on its performance was investigated. Finally, the results obtained from this experiment were compared with those obtained from common industrial catalysts.

The use of this catalyst bed with the abovementioned properties resulted in high dispersion of the active part of nickel on the surface of the catalyst bed, which consequently increased the activity and stability of the catalyst in comparison with the commercial catalyst.

Among the plans that will be investigated by the researchers in the near future, mention can be made of the addition of various percentages of alkali and alkaline-earth metals as promoter on this catalyst and studying their effect on steam reforming of methane and also on dry reforming of methane.

Results of the research have been published in Chinese Journal of Catalysis, vol. 34, issue 7, July 2013, pp. 1443-1448.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Chemistry

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water June 15th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project