Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silver Nanowire Sensors Hold Promise for Prosthetics, Robotics

A sensor based on silver nanowires is mounted onto a thumb joint to monitor the skin strain associated with thumb flexing. The sensor shows good wearability and large-strain sensing capability.Photo: Shanshan Yao.
A sensor based on silver nanowires is mounted onto a thumb joint to monitor the skin strain associated with thumb flexing. The sensor shows good wearability and large-strain sensing capability.

Photo: Shanshan Yao.

Abstract:
"Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made Of Silver Nanowires"

Authors: Shanshan Yao and Yong Zhu, North Carolina State University

Published: Online Jan. 14, Nanoscale

DOI: 10.1039/C3NR05496A

Abstract: Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors are demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of knee joint in patellar reflex (knee-jerk) and other human motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels.

Silver Nanowire Sensors Hold Promise for Prosthetics, Robotics

Raleigh, NC | Posted on January 16th, 2014

North Carolina State University researchers have used silver nanowires to develop wearable, multifunctional sensors that could be used in biomedical, military or athletic applications, including new prosthetics, robotic systems and flexible touch panels. The sensors can measure strain, pressure, human touch and bioelectronic signals such as electrocardiograms.

"The technology is based on either physical deformation or "fringing" electric field changes. The latter is very similar to the mechanism used in smartphone touch screens, but the sensors we've developed are stretchable and can be mounted on a variety of curvilinear surfaces such as human skin," says Shanshan Yao, a Ph.D. student at NC State and lead author of a paper on the work.

"These sensors could be used to help develop prosthetics that respond to a user's movement and provide feedback when in use," says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and senior author of the paper. "They could also be used to create robotics that can ‘feel' their environment, or the sensors could be incorporated into clothing to track motion or monitor an individual's physical health."

The researchers built on Zhu's earlier work to create highly conductive and elastic conductors made from silver nanowires. Specifically, the researchers sandwiched an insulating material between two of the stretchable conductors. The two layers then have the ability - called "capacitance" - to store electric charges. Pushing, pulling or touching the stretchable conductors changes the capacitance. The sensors work by measuring that change in capacitance.

"Creating these sensors is simple and low cost," Yao says. "And we've already demonstrated the sensors in several prototype applications."

For example, the researchers employed these sensors to monitor thumb movement, which can be useful in controlling robotic or prosthetic devices. The researchers also demonstrated an application to monitor knee movements while a test subject is running, walking and jumping.

"The deformation involved in these movements is large, and would break a lot of other sensor devices," Zhu says. "But our sensors can be stretched to 150 percent or more of their original length without losing functionality, so they can handle it."

The researchers also developed an array of sensors that can map pressure distribution, which is important for use in robotics and prosthetics applications. The sensors exhibit a quick response time - 40 milliseconds - so strain and pressure can be monitored in real time.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Yong Zhu
919.513.7735

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made Of Silver Nanowires,” is published online in the journal Nanoscale. The work was supported by the National Science Foundation through NC State’s ASSIST Engineering Research Center:

Related News Press

News and information

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Flexible Electronics

Printing Flexible Graphene Supercapacitors December 1st, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Nanomedicine

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Sensors

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

Discoveries

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Announcements

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project