Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silver Nanowire Sensors Hold Promise for Prosthetics, Robotics

A sensor based on silver nanowires is mounted onto a thumb joint to monitor the skin strain associated with thumb flexing. The sensor shows good wearability and large-strain sensing capability.Photo: Shanshan Yao.
A sensor based on silver nanowires is mounted onto a thumb joint to monitor the skin strain associated with thumb flexing. The sensor shows good wearability and large-strain sensing capability.

Photo: Shanshan Yao.

Abstract:
"Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made Of Silver Nanowires"

Authors: Shanshan Yao and Yong Zhu, North Carolina State University

Published: Online Jan. 14, Nanoscale

DOI: 10.1039/C3NR05496A

Abstract: Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors are demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of knee joint in patellar reflex (knee-jerk) and other human motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels.

Silver Nanowire Sensors Hold Promise for Prosthetics, Robotics

Raleigh, NC | Posted on January 16th, 2014

North Carolina State University researchers have used silver nanowires to develop wearable, multifunctional sensors that could be used in biomedical, military or athletic applications, including new prosthetics, robotic systems and flexible touch panels. The sensors can measure strain, pressure, human touch and bioelectronic signals such as electrocardiograms.

"The technology is based on either physical deformation or "fringing" electric field changes. The latter is very similar to the mechanism used in smartphone touch screens, but the sensors we've developed are stretchable and can be mounted on a variety of curvilinear surfaces such as human skin," says Shanshan Yao, a Ph.D. student at NC State and lead author of a paper on the work.

"These sensors could be used to help develop prosthetics that respond to a user's movement and provide feedback when in use," says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and senior author of the paper. "They could also be used to create robotics that can ‘feel' their environment, or the sensors could be incorporated into clothing to track motion or monitor an individual's physical health."

The researchers built on Zhu's earlier work to create highly conductive and elastic conductors made from silver nanowires. Specifically, the researchers sandwiched an insulating material between two of the stretchable conductors. The two layers then have the ability - called "capacitance" - to store electric charges. Pushing, pulling or touching the stretchable conductors changes the capacitance. The sensors work by measuring that change in capacitance.

"Creating these sensors is simple and low cost," Yao says. "And we've already demonstrated the sensors in several prototype applications."

For example, the researchers employed these sensors to monitor thumb movement, which can be useful in controlling robotic or prosthetic devices. The researchers also demonstrated an application to monitor knee movements while a test subject is running, walking and jumping.

"The deformation involved in these movements is large, and would break a lot of other sensor devices," Zhu says. "But our sensors can be stretched to 150 percent or more of their original length without losing functionality, so they can handle it."

The researchers also developed an array of sensors that can map pressure distribution, which is important for use in robotics and prosthetics applications. The sensors exhibit a quick response time - 40 milliseconds - so strain and pressure can be monitored in real time.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Yong Zhu
919.513.7735

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made Of Silver Nanowires,” is published online in the journal Nanoscale. The work was supported by the National Science Foundation through NC State’s ASSIST Engineering Research Center:

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Display technology/LEDs/SS Lighting/OLEDs

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

Flexible Electronics

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Nanomedicine

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Sensors

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

New optical nanosensor improves brain mapping accuracy, opens way for more applications: Potassium-sensitive fluorescence-imaging method shines light on chemical activity within the brain March 3rd, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project