Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microscopic fountain pen adds new functionality to AFM Microscopy

‘Cantilever of an AFM microscope (tip not shown) is made hollow to be able to fill it with mercury and add a sensitive chemical sensor to the AFM’
‘Cantilever of an AFM microscope (tip not shown) is made hollow to be able to fill it with mercury and add a sensitive chemical sensor to the AFM’

Abstract:
The Atomic Force Microscope (AFM), which uses a fine-tipped probe to scan surfaces at the atomic scale, will soon be augmented with a chemical sensor. This involves the use of a hollow AFM cantilever, through which a liquid - in this case mercury - is passed under pressure. The droplet of mercury at the tip acts as a sensor. This microscopic fountain pen was developed by researchers at the University of Twente's MESA+ Institute for Nanotechnology.

Microscopic fountain pen adds new functionality to AFM Microscopy

Enschede, Netherlands | Posted on January 16th, 2014

An AFM's cantilever has a fine tip that can be used to map surfaces at the nanoscale.
The movements of the tip are monitored using laser light reflected from the cantilever. If you could manufacture a hollow cantilever and pass a liquid through it, as happens in a fountain pen, then you could kill two birds with one stone. In addition to mapping surfaces, you could also use it to make highly localized measurements of the concentration of specific chemicals. This concept was the brainchild of ​​Dr Peter Schön, a researcher who leads the "Enabling Technologies" Strategic Research Orientation at MESA+

Mercury

The liquid selected was mercury, as it has the ideal properties for this purpose, such as an extremely clean surface. The researchers have created a cantilever with a microscopic tube running through it. The tube's lining has special mechanical properties, to contain the mercury as it is pumped through under high pressure (6 bar). Using this system, it has proved possible to create a perfect droplet at the tip. The droplet itself is the sensor, moreover it can easily be replaced in situ by a new sensor - the next droplet. It is also important that electrical current is only conducted through the mercury in the microscopic tube and not via parts of the cantilever, so as not to affect the measurement result. This goal, too, was successfully achieved.

Dual function

A sensor of such exquisite sensitivity can be used to measure concentrations of specific chemicals on biomolecules and biomembranes, for example. It can also be used in combination with AFM, to make highly localized measurements of corrosion while at the same time gathering other information about the surface in question. This makes for a particularly powerful combination of measurement methods.

Details of the "fountain pen's" mechanism of action were recently published in "Analytical Chemistry". The researchers are now focusing on ways of combining this technique with an AFM tip. They are also developing a technique for efficiently releasing the used mercury droplet to make way for a "clean" sensor.

In the course of this study Dr Schön cooperated with micromechanics experts from the Transducers Science and Technology group (which is also part of MESA+) and with a spinoff company, SmartTip (www.smarttip.nl)

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Sensors

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Discoveries

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Tools

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Nanometrics to Announce Second Quarter Financial Results on August 1, 2017 July 14th, 2017

Nanometrics Introduces SpectraProbe Analysis Software: Advanced software and algorithms enhancing Nanometrics metrology fleet capabilities fab-wide July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project