Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > What makes superalloys super - hierarchical microstructure of a superalloy

The image shows the three-dimensional reconstruction of an atom probe measurement. The γ matrix (purple) can be seen surrounding the cuboidal γ’ precipitates (green). Only a few nanometre-sized γ platelets can be seen in the γ’ precipitates. Atom probe tomography allows a site specific analysis of the structure at the atomic scale and reveals the chemical composition in measurements of individual areas. Image: HZB
The image shows the three-dimensional reconstruction of an atom probe measurement. The γ matrix (purple) can be seen surrounding the cuboidal γ’ precipitates (green). Only a few nanometre-sized γ platelets can be seen in the γ’ precipitates. Atom probe tomography allows a site specific analysis of the structure at the atomic scale and reveals the chemical composition in measurements of individual areas.

Image: HZB

Abstract:
Researchers have observed for the first time in detail how a hierarchical microstructure develops during heat treatment of a superalloy

What makes superalloys super - hierarchical microstructure of a superalloy

Berlin, Germany | Posted on January 14th, 2014

Materials in high-performance turbines have to withstand not only powerful mechanical forces, they also have to maintain their chemical and mechanical properties almost up to their melting points. For this reason, turbine manufacturers have employed special nickel-based high-performance alloys for decades. New work from Helmholtz-Zentrum Berlin für Materialien and Energie (HZB) now shows in detail how new phases in a nickel-based alloy form and evolve, providing clues to how high-performance alloys could be improved. Doctoral student Florian Vogel and Dr. Nelia Wanderka from the HZB Institute of Applied Materials have elegantly combined two methods to accomplish this: transmission electron microscopy (TEM) and atom probe tomography (APT), which they carried out in collaboration with colleagues from the University of Münster.

They were interested in a phase separation phenomenon that has been known for around 50 years, but could neither be precisely observed nor understood until now: The microstructure of nickel-based alloys changes under controlled ageing or heat treatment and in the classical two-phase microstructure new phases are initially formed. Wanderka and Vogel were able to precisely observe the phase separation process on the atomic scale for the first time.

To do so, they simulated the ageing process of the alloy by heat treating it for different periods. They documented how the microstructure changed during the ageing of the alloy using micrographs from the transmission electron microscope. Whereas the classical two-phase microstructure consists of cuboid γ' precipitates embedded in a so called γ-matrix, during heat treatment, spherical γ particles initially form in the γ' precipitates of the alloy, then further coalesce into plates that finally split the γ' precipitates. The thermo-mechanical properties of these types of alloys depend largely on the stability of this γ/γ´ microstructure.

In order to determine the atomic constituents of the individual phases, but primarily to learn about the formation and make-up of the poorly understood γ particle, Vogel and Wanderka investigated the aged samples using atom probe tomography at the University of Münster. They succeeded in reconstructing the atomic lattice of the samples layer by layer and determining the composition of all phases, so that they could explain the chemical evolution of the γ particles.

"Until now, it was assumed that splitting of the γ' precipitates refines the microstructure during ageing, which would be beneficial for the alloy's stability under thermo-mechanical load. We were able to show that this is not correct. The microstructure indeed changes considerably, but it is not improved by the splitting however. We were actually able to correlate the best mechanical properties with the presence of spherical or plate-like γ particles and not with the later stages after splitting of the γ' precipitates has taken place", explains Florian Vogel. Nelia Wanderka adds: "If we want to improve the stability of the microstructure and thus the thermomechanical properties of the alloy, we need to be sure that the γ' precipitates are not split by the γ particles, but instead remain intact through appropriate heat treatment and composition of the alloy. Atom probe tomography helps us in understanding the role of the alloying elements in the formation and growth of the γ particles. From this, we can learn how to influence these processes."

####

For more information, please click here

Contacts:
Dr. Nelia Wanderka

49-308-062-42079

Florian Vogel
Tel (030) 8062 - 43217
Fax (030) 8062 - 43059


Dr. Antonia Rötger
Tel (030) 8062 - 43733
Fax (030) 8062 - 42998

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The work was published 20 Dec 2013 in the distinguished journal Nature Communications. doi:10.1038/ncomms3955:

Related News Press

Imaging

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Discoveries

A fast solidification process makes material crackle February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Materials/Metamaterials

Graphene decharging and molecular shielding February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Announcements

Graphene decharging and molecular shielding February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Tools

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

Automotive/Transportation

Canadian physicists discover new properties of superconductivity February 8th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

Aerospace/Space

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Deep Space Industries teams with UTIAS Space Flight Laboratory to demonstrate autonomous spacecraft maneuvering: SFL and DSI demonstrate enabling technology for low-cost asteroid missions and constellations January 25th, 2016

Graphene composite may keep wings ice-free: Rice University develops conductive material to heat surfaces, simplify ice removal January 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic