Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New hybrid molecules could lead to materials that function at the nanoscale: Research could lead to improvements in large-scale water purification and solar power

The outcome of the CAREER Award will be new materials with predictable structure and organication on both the molecular scale and nanoscale. A new molecular architecture, dendornized helix bundle assemblies, will be developed under this award. The new molecules are hybrids of highly branched polymers called dendrons, which promote organization of the 2-D hexagonal array structure having dimensions ~2-10nm, and helical peptides that associate into protein-like bundles. The bundles have a discrete height (~7-10nm), and the precise arrangement of atoms in the bundle can be used to create functional materials such as selectively permeable membranes.

Credit: Jonathan G. Rudick, Stony Brook University
The outcome of the CAREER Award will be new materials with predictable structure and organication on both the molecular scale and nanoscale. A new molecular architecture, dendornized helix bundle assemblies, will be developed under this award. The new molecules are hybrids of highly branched polymers called dendrons, which promote organization of the 2-D hexagonal array structure having dimensions ~2-10nm, and helical peptides that associate into protein-like bundles. The bundles have a discrete height (~7-10nm), and the precise arrangement of atoms in the bundle can be used to create functional materials such as selectively permeable membranes.

Credit: Jonathan G. Rudick, Stony Brook University

Abstract:
Synthetic chemists today have the ability to construct molecules of almost any atomic composition, creating new materials with any number of promising applications that range from sustainable energy and environmental remediation, to high-performance electronics.

New hybrid molecules could lead to materials that function at the nanoscale: Research could lead to improvements in large-scale water purification and solar power

Arlington, VA | Posted on January 14th, 2014

"It is possible to finely tune the properties of molecules through chemical synthesis to achieve just the right balance of properties needed," says Jonathan Rudick, an assistant professor of chemistry at Stony Brook University. "For example, through chemical synthesis, we can select ranges of the solar spectrum that a molecule will absorb, which has been essential for progress made in the area of organic molecules for solar power."

The National Science Foundation (NSF)-funded scientist is studying a class of molecules known as dendrons, highly branched molecules shaped like wedges or cones, which pack together to form circular or spherical assemblies with nanoscale dimensions. His group aims to develop a new class of nanoscale materials that can be processed like conventional synthetic polymers, yet retain the high structured order found in proteins.

One potential benefit of their work could be in developing a low-cost, low-weight and compact material that could be used to purify large volumes of water, and prove valuable in developing countries where potable water is difficult to find. It also could be useful in large scale water treatment facilities "where you need to be able to purify large volumes quickly, and the less membrane it takes to do that, the better," he says.

This requires creating the tiniest of channels for the water to pass through, which is not as simple as it sounds.

"The composition lining of the hole determines whether the water will go through," he says. "When you get a hole down to being the size of a molecule, then the interactions between the atoms in the water molecule and the atoms that line the hole become critical as to whether or not the water will go through. It's not like shooting water through a faucet."

Dendrons pose a special challenge in that "there is very little order to how the atoms are arranged within their assembly," making it difficult for scientists to manipulate the atoms, Rudick says.

However, peptides, on the other hand, another class of molecules "can take on a helical conformation, in which the atoms are arranged like a spiral staircase," with known locations for each atom, he explains. "Because the location of each atom in the helical molecule is known, we can accurately anticipate the positions of atoms in bundles of helical peptides."

Their approach, then, is to attempt to design a hybrid using the best features of each. The result would be a new class of molecules, dendronized helix bundle assemblies.

"We anticipate that this new class of materials will allow us to more accurately understand how materials function at the nanoscale," he says.

"We are trying to prove the concept that we can create a material where you can have atomic level control," he adds. "We synthesize new materials. We make these new materials, and we are characterizing the structure of films that can be made from them."

Dendronized helix bundle assemblies "represents a class of molecules that has never been made before," he says. "It's a class of polymer with a perfectly branched molecular structure. We refer to them as 'bio hybrid molecules,' because part is something found in nature, and the other part is synthetic. We are covalently attaching sequences of amino acids that might be found in helical proteins in nature to dendrons."

He is conducting his research under a NSF Faculty Early Career Development (CAREER) award. The grant supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research within the context of the mission of their organization. NSF is funding his work with about $500,000 over five years.

As part of the grant's educational component, his lab is working with a local high school to teach students about liquid crystals and other forms of soft matter.

Dendronized helix bundle assemblies also could have a major impact in the development of molecular materials for solar power, he says.

"The active components in organic photovoltaic materials are organic molecules that can absorb light called chromophores," he explains. "The arrangement of chromophores in a film plays an important role in determining whether an absorbed photon of light is transformed into energy we can use.

"Furthermore, the best arrangement of chromophores is not yet known, and will likely vary depending on the particular chromophore being used," he adds. "By incorporating chromophores within the helical bundle portion of our hybrid molecular materials, we will be able to systematically explore how to optimize the performance of solar conversion materials."

-- Marlene Cimons, National Science Foundation

####

For more information, please click here

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Chemistry

Creating new materials with quantum effects for electronics January 29th, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Materials/Metamaterials

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Environment

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Energy

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Water

Nanoparticles for clean drinking water January 17th, 2015

Going with the flow January 16th, 2015

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

Liquids and glasses relax, too. But not like you thought January 15th, 2015

Solar/Photovoltaic

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE