Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New hybrid molecules could lead to materials that function at the nanoscale: Research could lead to improvements in large-scale water purification and solar power

The outcome of the CAREER Award will be new materials with predictable structure and organication on both the molecular scale and nanoscale. A new molecular architecture, dendornized helix bundle assemblies, will be developed under this award. The new molecules are hybrids of highly branched polymers called dendrons, which promote organization of the 2-D hexagonal array structure having dimensions ~2-10nm, and helical peptides that associate into protein-like bundles. The bundles have a discrete height (~7-10nm), and the precise arrangement of atoms in the bundle can be used to create functional materials such as selectively permeable membranes.

Credit: Jonathan G. Rudick, Stony Brook University
The outcome of the CAREER Award will be new materials with predictable structure and organication on both the molecular scale and nanoscale. A new molecular architecture, dendornized helix bundle assemblies, will be developed under this award. The new molecules are hybrids of highly branched polymers called dendrons, which promote organization of the 2-D hexagonal array structure having dimensions ~2-10nm, and helical peptides that associate into protein-like bundles. The bundles have a discrete height (~7-10nm), and the precise arrangement of atoms in the bundle can be used to create functional materials such as selectively permeable membranes.

Credit: Jonathan G. Rudick, Stony Brook University

Abstract:
Synthetic chemists today have the ability to construct molecules of almost any atomic composition, creating new materials with any number of promising applications that range from sustainable energy and environmental remediation, to high-performance electronics.

New hybrid molecules could lead to materials that function at the nanoscale: Research could lead to improvements in large-scale water purification and solar power

Arlington, VA | Posted on January 14th, 2014

"It is possible to finely tune the properties of molecules through chemical synthesis to achieve just the right balance of properties needed," says Jonathan Rudick, an assistant professor of chemistry at Stony Brook University. "For example, through chemical synthesis, we can select ranges of the solar spectrum that a molecule will absorb, which has been essential for progress made in the area of organic molecules for solar power."

The National Science Foundation (NSF)-funded scientist is studying a class of molecules known as dendrons, highly branched molecules shaped like wedges or cones, which pack together to form circular or spherical assemblies with nanoscale dimensions. His group aims to develop a new class of nanoscale materials that can be processed like conventional synthetic polymers, yet retain the high structured order found in proteins.

One potential benefit of their work could be in developing a low-cost, low-weight and compact material that could be used to purify large volumes of water, and prove valuable in developing countries where potable water is difficult to find. It also could be useful in large scale water treatment facilities "where you need to be able to purify large volumes quickly, and the less membrane it takes to do that, the better," he says.

This requires creating the tiniest of channels for the water to pass through, which is not as simple as it sounds.

"The composition lining of the hole determines whether the water will go through," he says. "When you get a hole down to being the size of a molecule, then the interactions between the atoms in the water molecule and the atoms that line the hole become critical as to whether or not the water will go through. It's not like shooting water through a faucet."

Dendrons pose a special challenge in that "there is very little order to how the atoms are arranged within their assembly," making it difficult for scientists to manipulate the atoms, Rudick says.

However, peptides, on the other hand, another class of molecules "can take on a helical conformation, in which the atoms are arranged like a spiral staircase," with known locations for each atom, he explains. "Because the location of each atom in the helical molecule is known, we can accurately anticipate the positions of atoms in bundles of helical peptides."

Their approach, then, is to attempt to design a hybrid using the best features of each. The result would be a new class of molecules, dendronized helix bundle assemblies.

"We anticipate that this new class of materials will allow us to more accurately understand how materials function at the nanoscale," he says.

"We are trying to prove the concept that we can create a material where you can have atomic level control," he adds. "We synthesize new materials. We make these new materials, and we are characterizing the structure of films that can be made from them."

Dendronized helix bundle assemblies "represents a class of molecules that has never been made before," he says. "It's a class of polymer with a perfectly branched molecular structure. We refer to them as 'bio hybrid molecules,' because part is something found in nature, and the other part is synthetic. We are covalently attaching sequences of amino acids that might be found in helical proteins in nature to dendrons."

He is conducting his research under a NSF Faculty Early Career Development (CAREER) award. The grant supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research within the context of the mission of their organization. NSF is funding his work with about $500,000 over five years.

As part of the grant's educational component, his lab is working with a local high school to teach students about liquid crystals and other forms of soft matter.

Dendronized helix bundle assemblies also could have a major impact in the development of molecular materials for solar power, he says.

"The active components in organic photovoltaic materials are organic molecules that can absorb light called chromophores," he explains. "The arrangement of chromophores in a film plays an important role in determining whether an absorbed photon of light is transformed into energy we can use.

"Furthermore, the best arrangement of chromophores is not yet known, and will likely vary depending on the particular chromophore being used," he adds. "By incorporating chromophores within the helical bundle portion of our hybrid molecular materials, we will be able to systematically explore how to optimize the performance of solar conversion materials."

-- Marlene Cimons, National Science Foundation

####

For more information, please click here

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Chemistry

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

A micro-thermometer to record tiny temperature changes May 15th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Chip Technology

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

Discoveries

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Materials/Metamaterials

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Mining for gold with a computer: Texas A&M team gleans new insights on key material May 3rd, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Announcements

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Environment

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

'Sweet spot' in sweet material for hydrogen storage: Study IDs 'white graphene' architecture with unprecedented hydrogen storage capacity March 12th, 2018

Converting CO2 into Usable Energy: Scientists show that single nickel atoms are an efficient, cost-effective catalyst for converting carbon dioxide into useful chemicals March 1st, 2018

Energy

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

A designer's toolkit for constructing complex nanoparticles May 5th, 2018

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations May 4th, 2018

Water

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Solar/Photovoltaic

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project