Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New hybrid molecules could lead to materials that function at the nanoscale: Research could lead to improvements in large-scale water purification and solar power

The outcome of the CAREER Award will be new materials with predictable structure and organication on both the molecular scale and nanoscale. A new molecular architecture, dendornized helix bundle assemblies, will be developed under this award. The new molecules are hybrids of highly branched polymers called dendrons, which promote organization of the 2-D hexagonal array structure having dimensions ~2-10nm, and helical peptides that associate into protein-like bundles. The bundles have a discrete height (~7-10nm), and the precise arrangement of atoms in the bundle can be used to create functional materials such as selectively permeable membranes.

Credit: Jonathan G. Rudick, Stony Brook University
The outcome of the CAREER Award will be new materials with predictable structure and organication on both the molecular scale and nanoscale. A new molecular architecture, dendornized helix bundle assemblies, will be developed under this award. The new molecules are hybrids of highly branched polymers called dendrons, which promote organization of the 2-D hexagonal array structure having dimensions ~2-10nm, and helical peptides that associate into protein-like bundles. The bundles have a discrete height (~7-10nm), and the precise arrangement of atoms in the bundle can be used to create functional materials such as selectively permeable membranes.

Credit: Jonathan G. Rudick, Stony Brook University

Abstract:
Synthetic chemists today have the ability to construct molecules of almost any atomic composition, creating new materials with any number of promising applications that range from sustainable energy and environmental remediation, to high-performance electronics.

New hybrid molecules could lead to materials that function at the nanoscale: Research could lead to improvements in large-scale water purification and solar power

Arlington, VA | Posted on January 14th, 2014

"It is possible to finely tune the properties of molecules through chemical synthesis to achieve just the right balance of properties needed," says Jonathan Rudick, an assistant professor of chemistry at Stony Brook University. "For example, through chemical synthesis, we can select ranges of the solar spectrum that a molecule will absorb, which has been essential for progress made in the area of organic molecules for solar power."

The National Science Foundation (NSF)-funded scientist is studying a class of molecules known as dendrons, highly branched molecules shaped like wedges or cones, which pack together to form circular or spherical assemblies with nanoscale dimensions. His group aims to develop a new class of nanoscale materials that can be processed like conventional synthetic polymers, yet retain the high structured order found in proteins.

One potential benefit of their work could be in developing a low-cost, low-weight and compact material that could be used to purify large volumes of water, and prove valuable in developing countries where potable water is difficult to find. It also could be useful in large scale water treatment facilities "where you need to be able to purify large volumes quickly, and the less membrane it takes to do that, the better," he says.

This requires creating the tiniest of channels for the water to pass through, which is not as simple as it sounds.

"The composition lining of the hole determines whether the water will go through," he says. "When you get a hole down to being the size of a molecule, then the interactions between the atoms in the water molecule and the atoms that line the hole become critical as to whether or not the water will go through. It's not like shooting water through a faucet."

Dendrons pose a special challenge in that "there is very little order to how the atoms are arranged within their assembly," making it difficult for scientists to manipulate the atoms, Rudick says.

However, peptides, on the other hand, another class of molecules "can take on a helical conformation, in which the atoms are arranged like a spiral staircase," with known locations for each atom, he explains. "Because the location of each atom in the helical molecule is known, we can accurately anticipate the positions of atoms in bundles of helical peptides."

Their approach, then, is to attempt to design a hybrid using the best features of each. The result would be a new class of molecules, dendronized helix bundle assemblies.

"We anticipate that this new class of materials will allow us to more accurately understand how materials function at the nanoscale," he says.

"We are trying to prove the concept that we can create a material where you can have atomic level control," he adds. "We synthesize new materials. We make these new materials, and we are characterizing the structure of films that can be made from them."

Dendronized helix bundle assemblies "represents a class of molecules that has never been made before," he says. "It's a class of polymer with a perfectly branched molecular structure. We refer to them as 'bio hybrid molecules,' because part is something found in nature, and the other part is synthetic. We are covalently attaching sequences of amino acids that might be found in helical proteins in nature to dendrons."

He is conducting his research under a NSF Faculty Early Career Development (CAREER) award. The grant supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research within the context of the mission of their organization. NSF is funding his work with about $500,000 over five years.

As part of the grant's educational component, his lab is working with a local high school to teach students about liquid crystals and other forms of soft matter.

Dendronized helix bundle assemblies also could have a major impact in the development of molecular materials for solar power, he says.

"The active components in organic photovoltaic materials are organic molecules that can absorb light called chromophores," he explains. "The arrangement of chromophores in a film plays an important role in determining whether an absorbed photon of light is transformed into energy we can use.

"Furthermore, the best arrangement of chromophores is not yet known, and will likely vary depending on the particular chromophore being used," he adds. "By incorporating chromophores within the helical bundle portion of our hybrid molecular materials, we will be able to systematically explore how to optimize the performance of solar conversion materials."

-- Marlene Cimons, National Science Foundation

####

For more information, please click here

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Chemistry

New reaction for the synthesis of nanostructures July 21st, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Chip Technology

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Discoveries

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Materials/Metamaterials

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Environment

A 'smart dress' for oil-degrading bacteria July 24th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Energy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Water

Electricity generated with water, salt and a 3-atoms-thick membrane: EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Solar/Photovoltaic

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic