Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Understanding secondary light emission by plasmonic nanostructures may improve medical imaging

Abstract:
Rick Kubetz, Engineering Communications Office

"Plasmonic nanostructures are of great current interest as chemical sensors, in vivo imaging agents, and for photothermal therapeutics," explained David G. Cahill, a Willett Professor and head of the Department of Materials Science and Engineering at Illinois. "Applications in imaging and sensing typically involve the emission of light at a different wavelength than the excitation, or ‘secondary light emission'. The interpretation of resonant secondary light emission in terms of fundamental processes has been controversial for 40 years.

Understanding secondary light emission by plasmonic nanostructures may improve medical imaging

Urbana, IL | Posted on January 13th, 2014

"In this work, we point out that resonant electronic Raman scattering and resonant fluorescence may both be useful descriptions of the secondary emission," Cahill added. "Better understanding of these principles and their limitations can result in improved biological and medical imaging modalities."

Fluorescence is a relatively familiar process by which light of one color or wavelength is absorbed by a material, e.g., an organic dye or a phosphor, and then light is emitted at a different color after a brief interval of time. In Raman scattering, the wavelength of light is shifted to a different color in an instantaneous scattering event. Raman scattering is not common in everyday life but is a critical tool of analytical chemistry.

"Light emission from plasmonic nanostructures at wavelengths shorter than the wavelength of pulsed laser excitation is typically described as the simultaneous absorption of two photons followed by fluorescence, which is used a lot in biological imaging," explained Jingyu Huang, first author of the paper that appears in the Proceedings of the National Academy of Sciences. "However, we found that by modeling the emission as Raman scattering from electron-hole pairs can predict how the light emission depends on laser power, pulse duration, and wavelength.

"Since we understand more of the mechanism of this kind of light mission, we can help to design the biological and medical imaging experiments better, and at the same time we can also have more insight into the broad background of surface-enhanced Raman scattering which is also related to this kind of light emission," Huang added.

####

For more information, please click here

Contacts:
David G. Cahill

217-333-6753

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research paper, “Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed laser excitation,” is available online. In addition to Huang and Cahill, the paper’s authors include Wei Wang, Department of Materials Science and Engineering, and Catherine J. Murphy, Department of Chemistry and the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign:

Related News Press

News and information

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Imaging

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanomedicine

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

Discoveries

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Announcements

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Tools

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Photonics/Optics/Lasers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

A new trick for controlling emission direction in microlasers June 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic