Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Understanding secondary light emission by plasmonic nanostructures may improve medical imaging

Abstract:
Rick Kubetz, Engineering Communications Office

"Plasmonic nanostructures are of great current interest as chemical sensors, in vivo imaging agents, and for photothermal therapeutics," explained David G. Cahill, a Willett Professor and head of the Department of Materials Science and Engineering at Illinois. "Applications in imaging and sensing typically involve the emission of light at a different wavelength than the excitation, or ‘secondary light emission'. The interpretation of resonant secondary light emission in terms of fundamental processes has been controversial for 40 years.

Understanding secondary light emission by plasmonic nanostructures may improve medical imaging

Urbana, IL | Posted on January 13th, 2014

"In this work, we point out that resonant electronic Raman scattering and resonant fluorescence may both be useful descriptions of the secondary emission," Cahill added. "Better understanding of these principles and their limitations can result in improved biological and medical imaging modalities."

Fluorescence is a relatively familiar process by which light of one color or wavelength is absorbed by a material, e.g., an organic dye or a phosphor, and then light is emitted at a different color after a brief interval of time. In Raman scattering, the wavelength of light is shifted to a different color in an instantaneous scattering event. Raman scattering is not common in everyday life but is a critical tool of analytical chemistry.

"Light emission from plasmonic nanostructures at wavelengths shorter than the wavelength of pulsed laser excitation is typically described as the simultaneous absorption of two photons followed by fluorescence, which is used a lot in biological imaging," explained Jingyu Huang, first author of the paper that appears in the Proceedings of the National Academy of Sciences. "However, we found that by modeling the emission as Raman scattering from electron-hole pairs can predict how the light emission depends on laser power, pulse duration, and wavelength.

"Since we understand more of the mechanism of this kind of light mission, we can help to design the biological and medical imaging experiments better, and at the same time we can also have more insight into the broad background of surface-enhanced Raman scattering which is also related to this kind of light emission," Huang added.

####

For more information, please click here

Contacts:
David G. Cahill

217-333-6753

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research paper, “Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed laser excitation,” is available online. In addition to Huang and Cahill, the paper’s authors include Wei Wang, Department of Materials Science and Engineering, and Catherine J. Murphy, Department of Chemistry and the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign:

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Imaging

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Three-dimensional Direction-dependent Force Measurement at the Subatomic Scale: International researchers led by Osaka University develop a microscopy technique to probe materials at the subatomic scale in multiple directions simultaneously May 11th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Discoveries

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Tools

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Photonics/Optics/Lasers

Researchers find new way to control light with electric fields May 25th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project