Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Production of Hyperbranched Drug-Carrying Polymers from Citric Acid Monomers in Iran

Abstract:
Iranian researchers from Payam-e Nour University of Tabriz in association with researchers from Lorestan University succeeded in the production of biodegradable hyperbranched polymers that are compatible with human body temperature.

Production of Hyperbranched Drug-Carrying Polymers from Citric Acid Monomers in Iran

Tehran, Iran | Posted on January 11th, 2014

The polymers are made of citric acid and glycerol monomers through dense polymerization method, and they can be used as drug-carrying nanoparticles in medical purposes, specially in cancer treatment.

Since citric acid decomposes at its melting point, the polymerization of this monomer is not possible for the preparation of polymers and copolymers. Three various types of hyperbranched polymers were synthesized in this research with different ratios of citric acid and glycerol under the same conditions of temperature and time. The polymer is compatible with biological media, and it has numerous internal voids that enable it to carry drug. The presence of functional groups on the surface of the polymer results in the release of the drug to the target. The abovementioned polymers can have desirable application in the place of biological molecules.

The hyperbranched polymers can be easily synthesized with very high molecular weight by changing two important parameters of reaction time and ratio of the monomer. The polymers are able to pass through cell membrane. Similar to dendrimers, the polymers have many functional groups and internal voids, so they are considered appropriate carriers of various medical molecules such as cancer treatment medicine, including cisplatin, through physical (capsulation) or chemical (coupling) methods.

Results of the research showed that the production of hyperbranched polymer was cost-effective. Moreover, the dosage of anticancer drug capsulated with hyperbranched polymer was halved in comparison with that in free anticancer drug. Therefore, the side-effects caused by the anticancer drug reduced on healthy cells.

The latest results of the research have been published in Journal of Applied Polymer Science, vol. 129, issue 6, 15 September 2013, pp. 3665-3671.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Nanomedicine

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project