Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Production of Hyperbranched Drug-Carrying Polymers from Citric Acid Monomers in Iran

Abstract:
Iranian researchers from Payam-e Nour University of Tabriz in association with researchers from Lorestan University succeeded in the production of biodegradable hyperbranched polymers that are compatible with human body temperature.

Production of Hyperbranched Drug-Carrying Polymers from Citric Acid Monomers in Iran

Tehran, Iran | Posted on January 11th, 2014

The polymers are made of citric acid and glycerol monomers through dense polymerization method, and they can be used as drug-carrying nanoparticles in medical purposes, specially in cancer treatment.

Since citric acid decomposes at its melting point, the polymerization of this monomer is not possible for the preparation of polymers and copolymers. Three various types of hyperbranched polymers were synthesized in this research with different ratios of citric acid and glycerol under the same conditions of temperature and time. The polymer is compatible with biological media, and it has numerous internal voids that enable it to carry drug. The presence of functional groups on the surface of the polymer results in the release of the drug to the target. The abovementioned polymers can have desirable application in the place of biological molecules.

The hyperbranched polymers can be easily synthesized with very high molecular weight by changing two important parameters of reaction time and ratio of the monomer. The polymers are able to pass through cell membrane. Similar to dendrimers, the polymers have many functional groups and internal voids, so they are considered appropriate carriers of various medical molecules such as cancer treatment medicine, including cisplatin, through physical (capsulation) or chemical (coupling) methods.

Results of the research showed that the production of hyperbranched polymer was cost-effective. Moreover, the dosage of anticancer drug capsulated with hyperbranched polymer was halved in comparison with that in free anticancer drug. Therefore, the side-effects caused by the anticancer drug reduced on healthy cells.

The latest results of the research have been published in Journal of Applied Polymer Science, vol. 129, issue 6, 15 September 2013, pp. 3665-3671.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Nanomedicine

Treatment of Cell Infection by Nanotechnology September 15th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Iranian Scientists Discover Nanotechnology Method to Remove Limitations in Tumor Surgery September 11th, 2014

Iranian Nanotechnology Scientists Produce Polymeric Scaffolds for Tissue Engineering September 11th, 2014

Discoveries

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Announcements

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Treatment of Cell Infection by Nanotechnology September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE