Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers find that computer components can be damaged by key manufacturing processes

Graeme Reaves
Graeme Reaves

Abstract:
MANUFACTURERS of increasingly minute computer chips, transistors and other products will have to take special note of research findings at the University of Huddersfield. The implications are that a key process used to transform the properties of nanoscale materials can cause much greater damage than previously realised.

Researchers find that computer components can be damaged by key manufacturing processes

Huddersfield, UK | Posted on January 8th, 2014

The University is home to the Electron Microscopy and Materials Analysis Research Group (EMMA), headed by Professor Stephen Donnelly. It has an advanced facility named MIAMI, which stands for Microscope and Ion Accelerators for Materials Investigation. It is used to bombard materials with ion beams and to examine the effects at the nanoscale.

During a recent experiment conducted by the team, including Research Fellow Dr Graeme Greaves, a number of gold nanorods - a thousand times smaller than a human hair - were irradiated with xenon atoms. They were a good subject for the experiment because nanowires or rods have a large surface area.

The findings were dramatic. "We were hoping to generate bubbles. We actually found that we were eroding the nanowires," said Dr Greaves.
And the rate of erosion - measured in terms of "sputtering yield", or how many atoms come out of matter for each incoming atom - was far in advance of expectations.

"The sputtering yield of a normal piece of flat gold should be of the order of 50 atoms per ion," said Dr Greaves. "In the case of rods we expected it to be greater, because the geometry is much reduced. We worked out that it should be higher by a factor of four, or something of that order. But we actually found that the greatest value measured was a sputtering yield of a thousand - a factor of 20."

The results were so dramatic that the Huddersfield team sought confirmation. They asked Professor Kai Nordlund(pictured right) of the University of Helsinki to run a molecular dynamics simulation, creating a virtual gold nanorod. The Finns were able to replicate the Huddersfield findings.
Now the experiment is the subject of an article in the leading journal Physical Letters Review, of Dr Greaves is the lead author.
"The research has considerable implications, particularly for medicine," said Dr Greaves.

"More and more people are working on nanostructures for practical applications. Gold nanoparticles can be used for tumour detection, the optimisation of the bio-distribution of drugs to diseased organs and a radiotherapy dose enhancer.
"Components of computer chips are very small nowadays - in the order of 20 nanometres in size and getting smaller - and ion beams are used to change the properties of these materials. Our research shows you must be very wary of the amount of damage that may be done."

####

For more information, please click here

Contacts:
Megan Beech

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchersí technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Imaging

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Chip Technology

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanomedicine

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Discoveries

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchersí technology turns wasted heat into power June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Announcements

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchersí technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Tools

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic