Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoplasmonics: Towards efficient light harvesting

Abstract:
The control of light is vital to many applications, including imaging, communications, sensing, cancer treatment, and even welding processes for automobile parts. Transformation optics is an emerging field that has revolutionized our understanding of how to control light by constituting an effectively curved electromagnetic space. This revolutionary strategy not only revisits the fundamental physics of light-matter interactions, but also renders trivial the design of optical functions that may otherwise be difficult or virtually impossible, such as an "invisibility cloak," which could only previously be found in science fiction. When compared with ray optics, the new transformation optics technique provides a picture that is equally intuitive, but that is much more accurate in its description of the wave nature of light by using the electric and magnetic field lines as its basis. Therefore, the validity of this method is not restricted to the macroscopic regime, but can also be extended to the subwavelength scale. In a recent review paper published by SCIENCE CHINA Information Sciences, Yu Luo and colleagues from Imperial College London illustrate how the general capabilities of the transformation optics technique can be used to treat the subwavelength fields that occur in plasmonic systems and review the latest developments in transformation optics as applied to nanophotonics.

Nanoplasmonics: Towards efficient light harvesting

Beijing, China | Posted on January 7th, 2014

In plasmonics, metallic structures with sharp corners can trap light into nanometric volumes, thus giving rise to strong near-field enhancements. This effect can be used to detect single molecules, generate high harmonic signals, and even improve absorption in photovoltaic devices. Further developments using these techniques need to be guided by accurate and versatile theoretical modeling. However, modeling of this type can be difficult, because various aspects associated with the sharp plasmonic structures can hinder provision of accurate and convenient solutions to the problem at hand. First, the size of the sharp metallic point structure is normally much smaller than that of the device overall, which makes it difficult to create meshes for numerical simulations. Second, the strong contrast in the dielectric functions at the metal-dielectric interfaces leads to slow convergence of the field expansions. Yu Luo and colleagues deploy the theory of transformation optics to circumvent these problems. Their idea is to transform a complex plasmonic system with little intrinsic geometrical symmetry into a canonical structure with translational or rotational symmetry, which is then relatively easy to study using conventional theory. For example, two touching nanowires can be transformed into two flat metal surfaces that are separated by a gap, and a sharp metal edge can be related to a periodic array of metal slabs. Other structures that can be studied using transformation optics include pairs of metallic nanospheres, asymmetric core-shell structures and rough metal surfaces. In fact, using transformation optics techniques, we could reverse engineer the optical properties of complex plasmonic nanostructures and redesign these structures based on the requirements of the desired applications.

Practical issues with the realization of plasmonic devices, such as the effects of edge rounding at sharp boundaries on the local field enhancement and resonance properties, can also be considered theoretically using transformation optics and provide useful guidance for the fabrication of these devices. In particular, the necessary conditions are highlighted for both broadband light absorption effects and large field enhancements. Experimental evidence for phenomena that have been predicted by transformation optics has also been reviewed, indicating potential applications in biosensing and broadband solar photovoltaics. These studies demonstrate the accuracy and versatility of transformation optics methods and are expected to encourage more researchers to enter this field.

####

About Science China Press
Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

For more information, please click here

Contacts:
YAN Bei

86-106-400-8316

Corresponding author:
LUO Yu

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Luo Y, Zhao R K, Fernandez-Dominguez A I, et al. Harvesting light with transformation optics. Sci China Inf Sci, 2013, 56(12): 120401(13):

Related News Press

News and information

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Imaging

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Sensors

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Discoveries

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Announcements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

Military

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Automotive/Transportation

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Penn and UC Merced researchers match physical and virtual atomic friction experiments May 8th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Photonics/Optics/Lasers

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project