Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A new simulatable model displaying exotic quantum phenomena: Scientists at MPQ develop a new model for realizing the Fractional Quantum Hall Effect in lattice systems

Illustration of the lattice model where each particle is either in a ‘spin up’ or a ‘spin down’ state.Graphic: Anne Nielsen, MPQ
Illustration of the lattice model where each particle is either in a ‘spin up’ or a ‘spin down’ state.

Graphic: Anne Nielsen, MPQ

Abstract:
It is fascinating how quantum mechanical behaviour of particles at smallest scales can give rise to strange properties that can be observed in the classical world. One example is the Fractional Quantum Hall Effect (FQH) that was discovered about 30 years ago in semiconductor devices. It is one of the most striking phenomena in condensed matter physics and has been thoroughly investigated. Nowadays experimental physicists are able to model effects occurring in condensed matter with ultracold atoms in optical lattices. This has sparked the interest in the question under which conditions the FQH could be observed in such systems. Now Anne Nielsen and co-workers from the Theory Division of Professor Ignacio Cirac at the Max-Planck-Institute of Quantum Optics and at the Universidad Autónoma de Madrid have developed a new lattice model which gives rise to FQH-like behaviour (Nature Communications, 28 November 2013).

A new simulatable model displaying exotic quantum phenomena: Scientists at MPQ develop a new model for realizing the Fractional Quantum Hall Effect in lattice systems

Garching, Germany | Posted on November 29th, 2013

The classical Hall-effect describes the behaviour of electrons or, generally spoken, charge carriers in an electrical conducting probe under the influence of a magnetic field that is directed perpendicular to the electric current. Due to the Lorentz-force a so-called Hall-voltage builds up, which increases linearly with the magnetic field.

In 1980 the German physicist Klaus von Klitzing investigated the electronic structure of so-called MOSFETs. At extremely low temperatures and extremely high magnetic fields he made the discovery that the Hall-resistivity would rise in small steps where the inverse of each plateau was an integer multiple of a combination of constants of nature. A few years later probes of gallium-arsenide, investigated under similar conditions, showed additional plateaus that would correspond to fractional multiples. These discoveries gave a completely new insight into the quantum mechanical processes that take place in flat semiconductor devices, and both were awarded with the Nobel prize in Physics: in 1985 the Nobel prize was given to Klaus von Klitzing, in 1998 to Robert Laughlin, Horst Störner and Daniel Tsui.

The FQH effect is a fascinating phenomenon and explained by theoreticians as being caused by one or more electrons forming composite states with the magnetic flux quanta. However, detailed experimental investigations of FQH are difficult to do in solids, and the states are very fragile. A cleaner implementation could be obtained by realizing the phenomenon in optical lattices in which ultracold atoms play the role of the electrons. This, and the hope to find simpler and more robust models displaying the FQH, is why theoreticians around the world seek to understand which mechanisms could lead to the observation of the FQH in lattices.

To this end the MPQ-team sets the focus on the topological properties that FQH states have. The topology of an object represents certain features of its geometrical structure: For example, a tee cup with a single hole in the handle and a bagel are topologically equivalent, because one can be transformed into the other without cutting it or punching holes in it. A bagel and a soccer ball, on the other hand, are not. In solid state systems the electrons experience the electric forces of many ions that are arranged in a periodic structure. Usually their energy levels make up straight and continuous energy ‘bands' with a trivial topology. Instead, in systems that exhibit the fractional quantum Hall effect, the topology provides the material with exotic properties, like that the current can only be transmitted at the edge and is very robust against perturbations.

"We have developed a new lattice model where a FQH state should be observed," Anne Nielsen says, first author of the publication. "It is defined on a two-dimensional lattice in which each site is occupied with a particle. Each particle can be either in a ‘spin up' or a ‘spin down' state. In addition, we imply specific, local, short range interactions between the particles." (See figure 1.) Numerical investigations of the properties of this system showed that its topological behaviour is in accordance with the one expected for a FQH state. The system does, for example, possess long range correlations that lead to the presence of two different ground states of the system when considering periodic boundary conditions.

To obtain their model the researchers used some specific mathematical tools. These tools are by themselves interesting because they may be more widely applicable and thereby open up doors to construct further interesting models.

"The mechanism that leads to FQH in our model seems to be different from those in previous models", Anne Nielsen points out. "And, furthermore, we have demonstrated how this model can be implemented with ultracold atoms in optical lattices. Realizing FQH states in optical lattices would give unique possibilities for detailed experimental investigations of the states under particularly well-controlled conditions and would, in addition, be a hallmark for quantum simulations."

####

About Max Planck Institute of Quantum Optics
Research at the Max Planck Institute of Quantum Optics concentrates on the interaction of light and matter under extreme conditions. One focus is the high-precision spectroscopy of hydrogen. In the course of these measurements Prof. Theodor W. Hänsch developed the frequency comb technique for which he was awarded the Nobel Prize for Physics in 2005. Other experiments aim at capturing single atoms and photons and letting them interact in a controlled way, thus paving the way towards future quantum computers. Theorists on the other hand are working on strategies to communicate quantum information in a most efficient way. They develop algorithms that allow the safe encryption of secret information. MPQ scientists also investigate the bizarre properties quantum-mechanical many-body systems can take on at extremely low temperatures (about one millionth Kelvin above zero). Finally light flashes with the incredibly short duration of several attoseconds (1 as is a billionth of a billionth of a second) are generated which make it possible, for example, to observe quantum-mechanical processes in atoms such as the 'tunnelling' of electrons or atomic transitions in real time.

For more information, please click here

Contacts:
Prof. Dr. J. Ignacio Cirac
Honorary Professor, TU München
Director at the Max-Planck-Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -705/736 /Fax: -336


Dr. Anne Nielsen
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -130
Fax: -336


Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Physics

Thinnest feasible membrane produced April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Discoveries

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

Quantum nanoscience

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

Notre Dame researchers provide new insights into quantum dynamics and quantum chaos April 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE