Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A new simulatable model displaying exotic quantum phenomena: Scientists at MPQ develop a new model for realizing the Fractional Quantum Hall Effect in lattice systems

Illustration of the lattice model where each particle is either in a ‘spin up’ or a ‘spin down’ state.Graphic: Anne Nielsen, MPQ
Illustration of the lattice model where each particle is either in a ‘spin up’ or a ‘spin down’ state.

Graphic: Anne Nielsen, MPQ

Abstract:
It is fascinating how quantum mechanical behaviour of particles at smallest scales can give rise to strange properties that can be observed in the classical world. One example is the Fractional Quantum Hall Effect (FQH) that was discovered about 30 years ago in semiconductor devices. It is one of the most striking phenomena in condensed matter physics and has been thoroughly investigated. Nowadays experimental physicists are able to model effects occurring in condensed matter with ultracold atoms in optical lattices. This has sparked the interest in the question under which conditions the FQH could be observed in such systems. Now Anne Nielsen and co-workers from the Theory Division of Professor Ignacio Cirac at the Max-Planck-Institute of Quantum Optics and at the Universidad Autónoma de Madrid have developed a new lattice model which gives rise to FQH-like behaviour (Nature Communications, 28 November 2013).

A new simulatable model displaying exotic quantum phenomena: Scientists at MPQ develop a new model for realizing the Fractional Quantum Hall Effect in lattice systems

Garching, Germany | Posted on November 29th, 2013

The classical Hall-effect describes the behaviour of electrons or, generally spoken, charge carriers in an electrical conducting probe under the influence of a magnetic field that is directed perpendicular to the electric current. Due to the Lorentz-force a so-called Hall-voltage builds up, which increases linearly with the magnetic field.

In 1980 the German physicist Klaus von Klitzing investigated the electronic structure of so-called MOSFETs. At extremely low temperatures and extremely high magnetic fields he made the discovery that the Hall-resistivity would rise in small steps where the inverse of each plateau was an integer multiple of a combination of constants of nature. A few years later probes of gallium-arsenide, investigated under similar conditions, showed additional plateaus that would correspond to fractional multiples. These discoveries gave a completely new insight into the quantum mechanical processes that take place in flat semiconductor devices, and both were awarded with the Nobel prize in Physics: in 1985 the Nobel prize was given to Klaus von Klitzing, in 1998 to Robert Laughlin, Horst Störner and Daniel Tsui.

The FQH effect is a fascinating phenomenon and explained by theoreticians as being caused by one or more electrons forming composite states with the magnetic flux quanta. However, detailed experimental investigations of FQH are difficult to do in solids, and the states are very fragile. A cleaner implementation could be obtained by realizing the phenomenon in optical lattices in which ultracold atoms play the role of the electrons. This, and the hope to find simpler and more robust models displaying the FQH, is why theoreticians around the world seek to understand which mechanisms could lead to the observation of the FQH in lattices.

To this end the MPQ-team sets the focus on the topological properties that FQH states have. The topology of an object represents certain features of its geometrical structure: For example, a tee cup with a single hole in the handle and a bagel are topologically equivalent, because one can be transformed into the other without cutting it or punching holes in it. A bagel and a soccer ball, on the other hand, are not. In solid state systems the electrons experience the electric forces of many ions that are arranged in a periodic structure. Usually their energy levels make up straight and continuous energy ‘bands' with a trivial topology. Instead, in systems that exhibit the fractional quantum Hall effect, the topology provides the material with exotic properties, like that the current can only be transmitted at the edge and is very robust against perturbations.

"We have developed a new lattice model where a FQH state should be observed," Anne Nielsen says, first author of the publication. "It is defined on a two-dimensional lattice in which each site is occupied with a particle. Each particle can be either in a ‘spin up' or a ‘spin down' state. In addition, we imply specific, local, short range interactions between the particles." (See figure 1.) Numerical investigations of the properties of this system showed that its topological behaviour is in accordance with the one expected for a FQH state. The system does, for example, possess long range correlations that lead to the presence of two different ground states of the system when considering periodic boundary conditions.

To obtain their model the researchers used some specific mathematical tools. These tools are by themselves interesting because they may be more widely applicable and thereby open up doors to construct further interesting models.

"The mechanism that leads to FQH in our model seems to be different from those in previous models", Anne Nielsen points out. "And, furthermore, we have demonstrated how this model can be implemented with ultracold atoms in optical lattices. Realizing FQH states in optical lattices would give unique possibilities for detailed experimental investigations of the states under particularly well-controlled conditions and would, in addition, be a hallmark for quantum simulations."

####

About Max Planck Institute of Quantum Optics
Research at the Max Planck Institute of Quantum Optics concentrates on the interaction of light and matter under extreme conditions. One focus is the high-precision spectroscopy of hydrogen. In the course of these measurements Prof. Theodor W. Hänsch developed the frequency comb technique for which he was awarded the Nobel Prize for Physics in 2005. Other experiments aim at capturing single atoms and photons and letting them interact in a controlled way, thus paving the way towards future quantum computers. Theorists on the other hand are working on strategies to communicate quantum information in a most efficient way. They develop algorithms that allow the safe encryption of secret information. MPQ scientists also investigate the bizarre properties quantum-mechanical many-body systems can take on at extremely low temperatures (about one millionth Kelvin above zero). Finally light flashes with the incredibly short duration of several attoseconds (1 as is a billionth of a billionth of a second) are generated which make it possible, for example, to observe quantum-mechanical processes in atoms such as the 'tunnelling' of electrons or atomic transitions in real time.

For more information, please click here

Contacts:
Prof. Dr. J. Ignacio Cirac
Honorary Professor, TU München
Director at the Max-Planck-Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -705/736 /Fax: -336


Dr. Anne Nielsen
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -130
Fax: -336


Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Physics

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Laboratories

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Photonics/Optics/Lasers

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Quantum nanoscience

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project