Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Inexpensive 'nano-camera' can operate at the speed of light: Device could be used in medical imaging, collision-avoidance detectors for cars, and interactive gaming

MIT students (left to right) Ayush Bhandari, Refael Whyte and Achuta Kadambi pose next to their "nano-camera" that can capture translucent objects, such as a glass vase, in 3-D.
Photo: Bryce Vickmark
MIT students (left to right) Ayush Bhandari, Refael Whyte and Achuta Kadambi pose next to their "nano-camera" that can capture translucent objects, such as a glass vase, in 3-D.

Photo: Bryce Vickmark

Abstract:
A $500 "nano-camera" that can operate at the speed of light has been developed by researchers in the MIT Media Lab.

Inexpensive 'nano-camera' can operate at the speed of light: Device could be used in medical imaging, collision-avoidance detectors for cars, and interactive gaming

Cambridge, MA | Posted on November 27th, 2013

The three-dimensional camera, which was presented last week at Siggraph Asia in Hong Kong, could be used in medical imaging and collision-avoidance detectors for cars, and to improve the accuracy of motion tracking and gesture-recognition devices used in interactive gaming.

The camera is based on "Time of Flight" technology like that used in Microsoft's recently launched second-generation Kinect device, in which the location of objects is calculated by how long it takes a light signal to reflect off a surface and return to the sensor. However, unlike existing devices based on this technology, the new camera is not fooled by rain, fog, or even translucent objects, says co-author Achuta Kadambi, a graduate student at MIT.

"Using the current state of the art, such as the new Kinect, you cannot capture translucent objects in 3-D," Kadambi says. "That is because the light that bounces off the transparent object and the background smear into one pixel on the camera. Using our technique you can generate 3-D models of translucent or near-transparent objects."

In a conventional Time of Flight camera, a light signal is fired at a scene, where it bounces off an object and returns to strike the pixel. Since the speed of light is known, it is then simple for the camera to calculate the distance the signal has travelled and therefore the depth of the object it has been reflected from.

Unfortunately though, changing environmental conditions, semitransparent surfaces, edges, or motion all create multiple reflections that mix with the original signal and return to the camera, making it difficult to determine which is the correct measurement.

Instead, the new device uses an encoding technique commonly used in the telecommunications industry to calculate the distance a signal has travelled, says Ramesh Raskar, an associate professor of media arts and sciences and leader of the Camera Culture group within the Media Lab, who developed the method alongside Kadambi, Refael Whyte, Ayush Bhandari, and Christopher Barsi at MIT and Adrian Dorrington and Lee Streeter from the University of Waikato in New Zealand.

"We use a new method that allows us to encode information in time," Raskar says. "So when the data comes back, we can do calculations that are very common in the telecommunications world, to estimate different distances from the single signal."

The idea is similar to existing techniques that clear blurring in photographs, says Bhandari, a graduate student in the Media Lab. "People with shaky hands tend to take blurry photographs with their cellphones because several shifted versions of the scene smear together," Bhandari says. "By placing some assumptions on the model — for example that much of this blurring was caused by a jittery hand — the image can be unsmeared to produce a sharper picture."

The new model, which the team has dubbed nanophotography, unsmears the individual optical paths.

In 2011 Raskar's group unveiled a trillion-frame-per-second camera capable of capturing a single pulse of light as it travelled through a scene. The camera does this by probing the scene with a femtosecond impulse of light, then uses fast but expensive laboratory-grade optical equipment to take an image each time. However, this "femto-camera" costs around $500,000 to build.

In contrast, the new "nano-camera" probes the scene with a continuous-wave signal that oscillates at nanosecond periods. This allows the team to use inexpensive hardware — off-the-shelf light-emitting diodes (LEDs) can strobe at nanosecond periods, for example — meaning the camera can reach a time resolution within one order of magnitude of femtophotography while costing just $500.

"By solving the multipath problem, essentially just by changing the code, we are able to unmix the light paths and therefore visualize light moving across the scene," Kadambi says. "So we are able to get similar results to the $500,000 camera, albeit of slightly lower quality, for just $500."

####

For more information, please click here

Contacts:
Abby Abazorius

617-253-2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Imaging

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Videos/Movies

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Display technology/LEDs/SS Lighting/OLEDs

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

Discoveries

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Announcements

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Tools

Hiden CATLAB Microreactor System at ARABLAB 2015 | Visit us on Booth 1011 February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE