Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The inner workings of a bacterial black box caught on time-lapse video

This figure demonstrates the steps researchers took to visualize carboxysome assembly. The critical genes (ccm operon) is deleted, which leads to a generation of cyanobacteria with no carboxysomes. These bacteria require high CO2 levels to survive. When the missing genes were introduced, researchers were able to watch rarely seen intermediate steps of carboxysome assembly.

Credit: Elsevier
This figure demonstrates the steps researchers took to visualize carboxysome assembly. The critical genes (ccm operon) is deleted, which leads to a generation of cyanobacteria with no carboxysomes. These bacteria require high CO2 levels to survive. When the missing genes were introduced, researchers were able to watch rarely seen intermediate steps of carboxysome assembly.

Credit: Elsevier

Abstract:
Cyanobacteria, found in just about every ecosystem on Earth, are one of the few bacteria that can create their own energy through photosynthesis and "fix" carbon - from carbon dioxide molecules - and convert it into fuel inside of miniscule compartments called carboxysomes. Using a pioneering visualization method, researchers from the University of California, Berkeley and the Department of Energy Joint Genome Institute (DOE JGI) made what are, in effect, movies of this complex and vital cellular machinery being assembled inside living cells. They observed that bacteria build these internal compartments in a way never seen in plant, animal and other eukaryotic cells.



Movie: After "turning on" the critical genes, the cyanobacteria began to construct carboxysomes out of fluorescent-tagged materials. The video is composed of still-images taken every three minutes, starting two hours after genes were induced.

Credit: Jeffrey Cameron and Cheryl Kerfeld.

The inner workings of a bacterial black box caught on time-lapse video

Walnut Creek, CA | Posted on November 25th, 2013

"The carboxysome, unlike eukaryotic organelles, assembles from the inside out," said senior author Cheryl Kerfeld, formerly of the DOE JGI, now at Michigan State University and UC Berkeley. The findings, published November 21, 2013 in the journal Cell, will illuminate bacterial physiology and may also influence nanotechnology development.

Although cyanobacteria are often called blue-green algae, that name is a misnomer since algae have complex membrane-bound compartments called organelles -- including chloroplasts -- which carry out photosynthesis, while cyanobacteria, like all other bacteria, lack membrane-bound organelles. Much of their cellular machinery - including their DNA - floats in the cell's cytoplasm unconstrained by membranes. However, they do have rudimentary microcompartments where some specialized tasks happen.

Looking a lot like the multi-faceted envelopes of viruses, carboxysomes are icosahedral, having about 20 triangle-shaped sides or facets. They contain copious amounts of Ribulose 1,5 Biphosphate Carboxylase Oxygenase (commonly called RuBisCo), an extremely abundant but slow enzyme required to fix carbon, inside their protein shells. The microcompartment also helps concentrate carbon dioxide and corral it near RuBisCo, while locking out oxygen, which otherwise tends to inhibit the chemical reactions involved in carbon-fixation.

Because they are so abundant, cyanobacteria play a major role in the earth's carbon cycle, the movement of carbon between the air, sea and land. "A significant fraction of global carbon fixation takes place in carboxysomes," said Kerfeld. Cyanobacteria, along with plants, impact climate change by lowering the amount of carbon from the atmosphere and depositing it in organic matter in the ocean and on land.

In order to track carboxysome assembly, the first author, Jeffrey Cameron, developed what Kerfeld called "an inducible system to turn on carboxysome biogenesis." He first developed mutant strains of a Synechococcus cyanobacterium that had its genes for building carboxysomes intentionally broken and then introduced the products of each of the knocked-out genes, which had been tagged with a fluorescent marker. He captured time-lapse digital images of the bacteria - a technique called time-lapse microscopy -- as they used the glowing building blocks and incorporated them into their new carboxysomes. The research team also painstakingly took high resolution still photographs using a transmission electron microscope of the intermediate stages of carboxysome construction. With these detailed images, they were able to provide a specific role for each product of each knocked-out gene, along with a timeline for how the bacteria built its carboxysomes. The team also suggested that other bacteria might build different types of microcompartments the same way carboxysomes are built, from the inside out.

It's the first time scientists have been able to watch bacterial organelles as they are built by living cells. Kerfeld noted that not only is the filming technique a major advance over previous methods, but that there are far-reaching implications for this work.

"The results provide clues to the organization of the enzymes encapsulated in the carboxysome and how this enhances CO2 fixation," said Kerfeld. Moreover, not only do the findings help researchers better understand how this previously mysterious compartment works, they can adapt what Kerfeld's team has learned about carboxysome architecture and apply it to designing synthetic nano-scale reactors. Understanding carbon-fixation in cyanobacteria contributes to our understanding of how this ubiquitous organism affects the global carbon cycle.

####

About DOE/Joint Genome Institute
The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter.

DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

For more information, please click here

Contacts:
David Gilbert

925-296-5643

Copyright © DOE/Joint Genome Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

Videos/Movies

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Nanoscale view of energy storage January 16th, 2017

Discoveries

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Environment

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Energy

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Nanobiotechnology

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Research partnerships

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project