Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The inner workings of a bacterial black box caught on time-lapse video

This figure demonstrates the steps researchers took to visualize carboxysome assembly. The critical genes (ccm operon) is deleted, which leads to a generation of cyanobacteria with no carboxysomes. These bacteria require high CO2 levels to survive. When the missing genes were introduced, researchers were able to watch rarely seen intermediate steps of carboxysome assembly.

Credit: Elsevier
This figure demonstrates the steps researchers took to visualize carboxysome assembly. The critical genes (ccm operon) is deleted, which leads to a generation of cyanobacteria with no carboxysomes. These bacteria require high CO2 levels to survive. When the missing genes were introduced, researchers were able to watch rarely seen intermediate steps of carboxysome assembly.

Credit: Elsevier

Abstract:
Cyanobacteria, found in just about every ecosystem on Earth, are one of the few bacteria that can create their own energy through photosynthesis and "fix" carbon - from carbon dioxide molecules - and convert it into fuel inside of miniscule compartments called carboxysomes. Using a pioneering visualization method, researchers from the University of California, Berkeley and the Department of Energy Joint Genome Institute (DOE JGI) made what are, in effect, movies of this complex and vital cellular machinery being assembled inside living cells. They observed that bacteria build these internal compartments in a way never seen in plant, animal and other eukaryotic cells.



Movie: After "turning on" the critical genes, the cyanobacteria began to construct carboxysomes out of fluorescent-tagged materials. The video is composed of still-images taken every three minutes, starting two hours after genes were induced.

Credit: Jeffrey Cameron and Cheryl Kerfeld.

The inner workings of a bacterial black box caught on time-lapse video

Walnut Creek, CA | Posted on November 25th, 2013

"The carboxysome, unlike eukaryotic organelles, assembles from the inside out," said senior author Cheryl Kerfeld, formerly of the DOE JGI, now at Michigan State University and UC Berkeley. The findings, published November 21, 2013 in the journal Cell, will illuminate bacterial physiology and may also influence nanotechnology development.

Although cyanobacteria are often called blue-green algae, that name is a misnomer since algae have complex membrane-bound compartments called organelles -- including chloroplasts -- which carry out photosynthesis, while cyanobacteria, like all other bacteria, lack membrane-bound organelles. Much of their cellular machinery - including their DNA - floats in the cell's cytoplasm unconstrained by membranes. However, they do have rudimentary microcompartments where some specialized tasks happen.

Looking a lot like the multi-faceted envelopes of viruses, carboxysomes are icosahedral, having about 20 triangle-shaped sides or facets. They contain copious amounts of Ribulose 1,5 Biphosphate Carboxylase Oxygenase (commonly called RuBisCo), an extremely abundant but slow enzyme required to fix carbon, inside their protein shells. The microcompartment also helps concentrate carbon dioxide and corral it near RuBisCo, while locking out oxygen, which otherwise tends to inhibit the chemical reactions involved in carbon-fixation.

Because they are so abundant, cyanobacteria play a major role in the earth's carbon cycle, the movement of carbon between the air, sea and land. "A significant fraction of global carbon fixation takes place in carboxysomes," said Kerfeld. Cyanobacteria, along with plants, impact climate change by lowering the amount of carbon from the atmosphere and depositing it in organic matter in the ocean and on land.

In order to track carboxysome assembly, the first author, Jeffrey Cameron, developed what Kerfeld called "an inducible system to turn on carboxysome biogenesis." He first developed mutant strains of a Synechococcus cyanobacterium that had its genes for building carboxysomes intentionally broken and then introduced the products of each of the knocked-out genes, which had been tagged with a fluorescent marker. He captured time-lapse digital images of the bacteria - a technique called time-lapse microscopy -- as they used the glowing building blocks and incorporated them into their new carboxysomes. The research team also painstakingly took high resolution still photographs using a transmission electron microscope of the intermediate stages of carboxysome construction. With these detailed images, they were able to provide a specific role for each product of each knocked-out gene, along with a timeline for how the bacteria built its carboxysomes. The team also suggested that other bacteria might build different types of microcompartments the same way carboxysomes are built, from the inside out.

It's the first time scientists have been able to watch bacterial organelles as they are built by living cells. Kerfeld noted that not only is the filming technique a major advance over previous methods, but that there are far-reaching implications for this work.

"The results provide clues to the organization of the enzymes encapsulated in the carboxysome and how this enhances CO2 fixation," said Kerfeld. Moreover, not only do the findings help researchers better understand how this previously mysterious compartment works, they can adapt what Kerfeld's team has learned about carboxysome architecture and apply it to designing synthetic nano-scale reactors. Understanding carbon-fixation in cyanobacteria contributes to our understanding of how this ubiquitous organism affects the global carbon cycle.

####

About DOE/Joint Genome Institute
The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter.

DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

For more information, please click here

Contacts:
David Gilbert

925-296-5643

Copyright © DOE/Joint Genome Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Videos/Movies

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale: An electron microscope-based lithography system for patterning materials at sizes as small as a single nanometer could be used to create and study materials with new properties May 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Discoveries

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Environment

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Research partnerships

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project