Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > University of Tehran Researchers Grow Porous, Hollow Nanostructures

Abstract:
Iranian researchers from Tehran University used the combination of gold and nickel as the growth catalyst and made possible the growth of porous and hollow nanostructures.

University of Tehran Researchers Grow Porous, Hollow Nanostructures

Tehran, Iran | Posted on November 25th, 2013

The method used by the researchers was used in the past for the synthesis of silicate nanowires, but the growth of the nanostructures was not possible before.

The main objective of the research is the creation of silicone nanotubes without template and the use of growth through vapor-liquid-solid (VLS) or solid-liquid-solid (SLS) methods. These methods had been used in the past for the creation of silicone nanowires, but the growth of porous and hollow nanostructures was not possible in them. The growth was materialized by using the combination of gold and nickel as the growth catalyst.

In this research, silicone nanotubes have been formed through a highly repeatable and almost simple method. Carbon nanotubes have been created for many years but it was not possible to synthesize silicone nanotubes. On the other hand, the nanostructures have promising future due to unique properties of silicone. One of the applications of these materials can be the simple production of field effect transistors. Moreover, the nanotubes are able to unzip by electronic current that is used in electron microscopy. Therefore, it is simple to produce silicone nanobands.

Results of the research have direct applications in electronics and bioelectronics. In case tubes with very small diameters and appropriate length can be produced, it is possible to produce field effect transistors with floating gate that can be controlled from inside. In this case, transistor current changes when a very small and charged creature such as DNA passes by, and it can be measured. Taking into consideration the very small size of this piece, DNA can be arranged in parallel position to complete sequencing data.

Results of the research have been published in ISI-indexed journal in Nano Letters, vol. 13, issue 3, 2013, pp. 889-897.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Chemistry

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Clarifiying complex chemical processes with quantum computers August 3rd, 2017

Strem Chemicals Surpasses ChemStewards® Requirements: Strem Qualifies for SOCMA’s “Excellence” Ranking August 3rd, 2017

Discoveries

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Announcements

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project