Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Use Mathematical Models to Investigatie Electrochemical Growth Mechanism of Gold Nanowires

Abstract:
Iranian materials engineering researchers from Sharif University of Technology investigated electrochemical growth mechanism of gold nanowires and nanotubes by matching the recorded current response during the reduction of ionic parts of gold (during the electrochemical growth of nanowires/nanotube) and corresponding response with cylindrical ultramicro electrodes arrays.

Scientists Use Mathematical Models to Investigatie Electrochemical Growth Mechanism of Gold Nanowires

Tehran, Iran | Posted on November 25th, 2013

In this research, the electrochemical growth of gold nanowires/nanotubes was modeled. During the research, the mechanism of electrochemical growth of gold nanowires and nanotubes was investigated by using mathematical methods related to cylindrical ultramicro electrode arrays by matching the recorded current response during the reduction of ionic parts of gold (during the electrochemical growth of nanowires/nanotube) and corresponding response with cylindrical ultramicro electrodes arrays. An experimental model was obtained with an error of approximately 2.85% for the diffusion of gold ion complexes into the solution during the growth of gold nanowires.

The research was carried out in a few steps. Firstly, gold nanowires and nanotubes were synthesized through electrochemical deposition method, and the recorded data during the formation of nanostructures were studied. Then, the electrochemical reduction of gold nanowires was analyzed by using the response of cylindrical ultramicro electrode arrays. Next, an experimental model with an error of approximately 2.85% was obtained for the first time for the diffusion of gold ion complexes into the solution during the growth of gold nanowires. Finally, the performance and response of the obtained nanostructures were investigated.

Results of the research have been published in details in Journal of the Electrochemical Society, vol. 160, issue 6, 2013, pp. 279-288.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Nanoelectronics

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Discoveries

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Announcements

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project