Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Copper promises cheaper, sturdier fuel cells: Copper nanowires offer an efficient, inexpensive approach to solar energy harvesting

The copper nanowires, seen here with a nickel coating, can split water molecules under the power of sunlight.

Credit: Zuofeng Chen
The copper nanowires, seen here with a nickel coating, can split water molecules under the power of sunlight.

Credit: Zuofeng Chen

Abstract:
Copper adorns the Statue of Liberty, makes sturdy, affordable wiring, and helps our bodies absorb iron. Now, researchers at Duke University would like to use copper to transform sunlight and water into a chemical fuel.

Copper promises cheaper, sturdier fuel cells: Copper nanowires offer an efficient, inexpensive approach to solar energy harvesting

Durham, NC | Posted on November 22nd, 2013

Converting solar energy into storable fuel remains one of the greatest challenges of modern chemistry. One of the ways chemists have tried to capture the power of the sun is through water splitting, in which the atoms of H2O are broken apart so the hydrogen may be collected and used as fuel. Plants do this naturally through photosynthesis, and for half a century, scientists have tried to recreate that process by tinkering with chemical catalysts jumpstarted by sunlight.

Indium tin oxide (ITO) is one material they've commonly tried to use. Researchers prefer it for its transparency -- which allows sunlight to pass through and trigger the water-splitting reactions -- and its ability to conduct electricity. But ITO is far from an ideal material.

"Indium is not very abundant," said Ben Wiley, assistant professor of chemistry at Duke University. "It is similar in abundance to silver in the earth's crust." As a result, solar fuel cells using ITO will likely remain expensive and uncompetitive with conventional energy sources like coal and natural gas, he said.

Wiley's lab has created something they hope can replace ITO: copper nanowires fused in a see-through film. The team -- including two postdoctoral researchers, a graduate student, and a former graduate student from Duke -- published their new approach last month in the chemistry journal Angewandte Chemie.

Copper is 1000 times more plentiful and 100 times less expensive than indium. Copper nanowire catalysts also cost less to produce than their ITO counterparts because they can be "printed" on pieces of glass or plastic in a liquid ink form, using a machine that functions much like a printing press. ITO production, by contrast, requires large, sequential chambers of pumps and vacuums that deposit a thin layer of indium atoms at a far slower rate.

The copper nanowire films consist of networks of microscopic metal rods, the properties and applications of which Wiley's lab has studied for years. The nanowires provide a high surface area for catalyzing chemistry, and Wiley's team experimented with coating them in either cobalt or nickel -- metals that serve as the actual chemical catalyst. Even with a coat of cobalt or nickel, the nanowire films allow nearly seven times more sunlight to pass through than ITO. The films are also flexible, leading Wiley to imagine the completed fuel cells one day being attached to backpacks or cars.

In the meantime, engineering and chemistry challenges remain. The nanowire films carry out only one half of the water-splitting equation, a process called water oxidation. The other half of the reaction involves using the electrons obtained from water oxidation to reduce water to hydrogen. Wiley's team expects to publish their work on this process in the coming year.

"A lot of groups are working on putting together complete devices to generate fuels from sunlight," he said, but "the efficiencies and costs of these systems have to be improved for them to get to commercial [production]."

Wiley noted that solar energy production is just one application of the copper nanowire films they study. The nanowires also show promise for use in flexible touch screens, organic LED (or OLED) lights and smart glass.

###

This research was funded by the National Science Foundation Research Triangle Materials Research Science and Engineering Center (DMR-1121107), a National Science Foundation Faculty Early Career Development award (DMR-1253534) and a National Science Foundation graduate research fellowship.

CITATION: "Optically Transparent Water Oxidation Catalysts Based on Copper Nanowires," Zuofeng Chen, Aaron Rathmell, Shengrong Ye, Adria Wilson, Ben Wiley. Angewandte Chemie, October 18, 2013. 10.1002/ange.201306585.

####

For more information, please click here

Contacts:
Erin Weeks

919-681-8057

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

Electrospray solves longstanding problem in Langmuir-Blodgett assembly: The electrospray spreads water-soluble solvents on water while minimizing mixing August 20th, 2015

Thin films

Electrospray solves longstanding problem in Langmuir-Blodgett assembly: The electrospray spreads water-soluble solvents on water while minimizing mixing August 20th, 2015

Scientists achieve major breakthrough in thin-film magnetism August 17th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Discoveries

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Announcements

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Energy

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Automotive/Transportation

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Lehigh University-DuPont tribology research seeks to reduce wear and waste August 13th, 2015

Flexible dielectric polymer can stand the heat August 6th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Fuel Cells

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

New spectroscopy technique provides unprecedented insights about the reactions powering fuel cells Nanotech-enabled chip developed at UCLA can analyze chemical reactions more accurately than large machines August 12th, 2015

Pouring fire on fuels at the nanoscale August 9th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Solar/Photovoltaic

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Novel nanostructures for efficient long-range energy transport August 21st, 2015

Charge transport in hybrid silicon solar cells August 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic