Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Power boosting self-cleaning solar panels

Abstract:
High-power, self-cleaning solar panels might be coming soon to a roof near you. There are two obvious problems with photovoltaic cells, solar panels. First, they are very shiny and so a lot of the incident sunlight is simply reflected back into the sky rather than being converted into electricity. Secondly, they get dirty with dust and debris caught on the wind and residues left behind by rain and birds. Now, research published in the International Journal of Nanomanufacturing suggests that it might be possible to add a nanoscopic relief pattern to the surface of solar cells that makes them non-reflective significantly boosting efficiency and at the same time making them highly non-stick and self-cleaning.

Power boosting self-cleaning solar panels

Olney, UK | Posted on November 22nd, 2013

Zuobin Wang of Changchun University of Science and Technology (China), Jin Zhang of Xi'an Technological University (China) and colleagues at Cardiff University (UK), who are partners of the EU FP7 LaserNaMi project, have devised an approach to lithography, the process used to "print" microelectronic circuits, that allows them to add a pattern to the surface of a solar cell. The features of the pattern are so small that individual parts are shorter than the wavelength of light. This means that incident sunlight becomes trapped rather than reflected passing on more of its energy to electricity-generation process that takes place within the panel.

The same pattern also makes the surface of the solar cell behave like the surface of a lotus leaf, a natural material that is known to be very water repellant, or hydrophobic, so that particles and liquids that land on it do not become stuck as there is no surface to which the droplets can grip. When it rains any deposits are sloughed away and the rainwater runs off efficiently leaving the panel clean and dry after the downpour.

The team's work indicates that a patterned layer on top of the active part of the panel can avoid the energy losses due to reflection from the surface. It directly boosts absorption of sunlight in the visible spectrum and into the near-infrared part of the spectrum, all of which contributes to a boost to the overall electrical efficiency of the panel. The team suggests that printing the surface of the photovoltaic cell so that it is covered with nanoscopic cones would provide the optimal combination of making the panel non-reflective and hydrophobic and so self-cleaning.

Full bibliographic information

"Nanoscale structures for implementation of anti-reflection and self-cleaning functions" in Int. J. Nanomanufacturing, 2013, 9, 520-531

####

About Inderscience
Inderscience is a publisher of high quality peer-reviewed international journals in the fields of science, engineering and technology, management, law and business administration, computing, Internet and IT, and energy, environment and sustainable development.

It applies the highest professional and ethical standards to the publishing of its journals and its conduct of its business, designed to:

* Map new frontiers in emerging technologies in research, industry and governance

* Link centres of excellence world-wide to stimulate and enhance creative and application-oriented problem solving for society

* Explore the synergy and collaboration within the sciences, management and policy creation and implementation

* Establish authoritative channels of communication between experts, policy-makers and practitioners in academia, industry and government

For more information, please click here

Contacts:
Albert Ang
+ 44 1234 240519

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A PDF of the peer-reviewed research paper is available to registered reporters here:

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Discoveries

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Materials/Metamaterials

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Energy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Research partnerships

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Solar/Photovoltaic

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project