Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Power boosting self-cleaning solar panels

Abstract:
High-power, self-cleaning solar panels might be coming soon to a roof near you. There are two obvious problems with photovoltaic cells, solar panels. First, they are very shiny and so a lot of the incident sunlight is simply reflected back into the sky rather than being converted into electricity. Secondly, they get dirty with dust and debris caught on the wind and residues left behind by rain and birds. Now, research published in the International Journal of Nanomanufacturing suggests that it might be possible to add a nanoscopic relief pattern to the surface of solar cells that makes them non-reflective significantly boosting efficiency and at the same time making them highly non-stick and self-cleaning.

Power boosting self-cleaning solar panels

Olney, UK | Posted on November 22nd, 2013

Zuobin Wang of Changchun University of Science and Technology (China), Jin Zhang of Xi'an Technological University (China) and colleagues at Cardiff University (UK), who are partners of the EU FP7 LaserNaMi project, have devised an approach to lithography, the process used to "print" microelectronic circuits, that allows them to add a pattern to the surface of a solar cell. The features of the pattern are so small that individual parts are shorter than the wavelength of light. This means that incident sunlight becomes trapped rather than reflected passing on more of its energy to electricity-generation process that takes place within the panel.

The same pattern also makes the surface of the solar cell behave like the surface of a lotus leaf, a natural material that is known to be very water repellant, or hydrophobic, so that particles and liquids that land on it do not become stuck as there is no surface to which the droplets can grip. When it rains any deposits are sloughed away and the rainwater runs off efficiently leaving the panel clean and dry after the downpour.

The team's work indicates that a patterned layer on top of the active part of the panel can avoid the energy losses due to reflection from the surface. It directly boosts absorption of sunlight in the visible spectrum and into the near-infrared part of the spectrum, all of which contributes to a boost to the overall electrical efficiency of the panel. The team suggests that printing the surface of the photovoltaic cell so that it is covered with nanoscopic cones would provide the optimal combination of making the panel non-reflective and hydrophobic and so self-cleaning.

Full bibliographic information

"Nanoscale structures for implementation of anti-reflection and self-cleaning functions" in Int. J. Nanomanufacturing, 2013, 9, 520-531

####

About Inderscience
Inderscience is a publisher of high quality peer-reviewed international journals in the fields of science, engineering and technology, management, law and business administration, computing, Internet and IT, and energy, environment and sustainable development.

It applies the highest professional and ethical standards to the publishing of its journals and its conduct of its business, designed to:

* Map new frontiers in emerging technologies in research, industry and governance

* Link centres of excellence world-wide to stimulate and enhance creative and application-oriented problem solving for society

* Explore the synergy and collaboration within the sciences, management and policy creation and implementation

* Establish authoritative channels of communication between experts, policy-makers and practitioners in academia, industry and government

For more information, please click here

Contacts:
Albert Ang
+ 44 1234 240519

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A PDF of the peer-reviewed research paper is available to registered reporters here:

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic