Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iron Oxide Nanoparticles Help Investigation of Cognitive Diseases

Abstract:
Iranian researchers from Islamic Azad University, Tehran Branch, in association with researchers from Institute of Biochemistry & Biophysics (IBB) of University of Tehran carried out in vitro an investigation into the changes in the structure of proteins inside brain cells and the interactions of the proteins using iron oxide nanoparticles.

Iron Oxide Nanoparticles Help Investigation of Cognitive Diseases

Tehran, Iran | Posted on November 21st, 2013

The progress of cognitive diseases that do not have any known definite treatment can be prevented if a treatment method is designed and optimized for cognitive diseases such as Alzheimer's-based on controlling metabolism processes of iron oxide in brain cells.

The research showed that microtubules can create magnetic field around themselves due to their dynamic properties and electrical charge. Therefore, they can play role in the transference of electrical signals in brain cells (neurons). It can be said that the protein plays an important role in the transference and probably in saving date in the brain. The malfunction in the performance of microtubules is one of the reasons for the appearance of cognitive diseases such as Alzheimer's.

Iron oxide nanoparticles were firstly produced in this research. Then, microtubule protein was extracted from the brain of a newly-died sheep, and its activity was studied through turbidimetry method. Next, the researchers studied the interaction between nanoparticles and microtubule and tau protein (a protein which is effective in the structural and functional stability of microtubules).

Results of the research showed that iron oxide magnetic nanoparticles and microtubules existing in the neurons can have magnetic interactions with each other, which is essential for the transference and conservation of brain data. However, if the nanoparticles are accumulated in the brain, which can be caused due to the malfunction of iron metabolism in brain cells and due to the improper conservation of iron in a protein called ferritin, the abovementioned interaction may be damaged, and nanoparticles connect with microtubules and tau protein, which results in the instability of microtubular polymers.

A part of the results of the research have been published in February 2013 in Journal of Biological Inorganic Chemistry, vol. 18, issue 3, pp. 357-369.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Discoveries

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Announcements

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project