Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ‘Wonder of Nanotechnology’ Details Research Enabling Nanoscale Optoelectronic Devices

The recently published The
Wonder of Nanotechnology:
Quantum Optoelectronic Devices
and Applications, is edited by
Manijeh Razeghi, Leo Esaki, and
Klaus von Klitzing.
The recently published The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications, is edited by Manijeh Razeghi, Leo Esaki, and Klaus von Klitzing.

Abstract:
Nanotechnology research has progressed into quantum-level systems where electrons, photonics, and even thermal properties can be engineered, enabling new structures and materials with which to create ever-shrinking, ever-faster electronics. "The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications," edited by Manijeh Razeghi and Nobel Laureates Leo Esaki and Klaus von Klitzing, focuses on the application of nanotechnology to modern semiconductor optoelectronic devices The book is published by SPIE, the international society of optics and photonics.

‘Wonder of Nanotechnology’ Details Research Enabling Nanoscale Optoelectronic Devices

Bellingham, WA | Posted on November 21st, 2013

The volume is a compilation of research papers from the International Conference on Infrared Optoelectronics at Northwestern University's Center for Quantum Devices in September 2012, developed into chapters representing state-of-the-art research in infrared materials and devices.

"Advances in material science at the nanometer scale are opening new doors in the area of optics and electronics. The ability to manipulate atoms and photons, and fabricate new material structures offers opportunities to realize new emitters, detectors, optics, ever-shrinking electronics, and integration of optics and electronics," writes Nibir Dhar, program manager with Defense Advanced Research Project Agency (DARPA), in an essay in the book. "Imaging technology has the opportunity to leverage these developments to produce new products for military, industrial, medical, security, and other consumer applications."

The editors of "Wonder of Nanotechnology" are:

Manijeh Razeghi, director of the Center for Quantum Devices at Northwestern University and one of the leading scientists in the field of semiconductor science and technology. Razeghi pioneered nanometer-scale architectures in semiconductor technology, and her research in quantum materials has culminated in various technologies such as type-II strained-layer superlattice infrared detectors, lasers, and terahertz technology. Her current interest is in nanoscale optoelectronic quantum devices.

Leo Esaki, who shared the 1973 Nobel Prize in Physics for his discovery of the phenomenon of electron tunneling while working at Tokyo Tsushin Kogyo (now known as Sony). He is known for his invention of the Esaki diode, which exploited that phenomenon. He also pioneered the development of the semiconductor superlattice while at IBM, and is president of the Yokohama College of Pharmacy in Japan.

Klaus von Klitzing, director of the Max Planck Institute for Solid State Research in Germany. Von Klitzing was awarded the 1985 Nobel Prize in Physics for his discovery of the integer quantum Hall effect. His current research focuses on the properties of low-dimensional electronic systems, typically in low temperatures and in high magnetic fields.

"The chapters in this book bear witness to how far we have come since the invention of manmade semiconductor superlattices in 1969," Esaki writes in the book's foreword. "I look back with wonder at all of the exciting developments of the last 44 years and can only imagine where the future will take this technology and what exciting discoveries await."

The book's editors also address the inspiration of nature in studying nanoscale structures, and how the human ability to control material composition on the nanometer scale is what allows us to achieve technological goals transcending the properties of naturally occurring materials.

"The wings of a butterfly, the feather of a peacock, the sheen of a pearl — all of these are examples of nature's photonic crystals: nanostructured arrangements of atoms that capture and recast the colors of the rainbow with iridescent beauty," von Klitzing writes in the book's preface. "As our tools to manipulate matter reach ever smaller length scales, we, too, are able to join in the game of discovery in the nano-world — a game that nature has long since mastered."

Notable chapters include:

"Advances in High-Power Quantum Cascade Lasers and Applications" by Arkadiy Lyakh, Richard Maulini, Alexei Tsekoun, and Boris Tadjikov (Pranalytica, Inc.), and CO2-laser inventor Kumar Patel (Pranalytica, Inc., and University of California Los Angeles)

"Type-II Superlattices: Status and Trends" by Elena Plis and Sanjay Krishna (Center for High-Technology Materials, University of New Mexico)

"Quantum Dots for Infrared Focal Plane Arrays Grown by MOCVD" by Manijeh Razeghi and Stanley Tsao (Center for Quantum Devices, Northwestern University)

"Quantum-Dot Biosensors using Fluorescence Resonance Energy Transfer (FRET)" by James Garland and Dinakar Ramadurai (Episensors, Inc., and Sivananthan Laboratories, Inc.) and Siva Sivananthan (Sivananthan Laboratories, Inc., and University of Illinois)

"Nanostructured Electrode Interfaces for Energy Applications" by Palash Gangopadhyay, Kaushik Balakrishnan, and Nasser Peyghambarian (College of Optical Sciences, University of Arizona)

####

About SPIE
SPIE is the international society for optics and photonics, a not-for-profit organization founded in 1955 to advance light-based technologies. The Society serves nearly 235,000 constituents from approximately 155 countries, offering conferences, continuing education, books, journals, and a digital library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided over $3.2 million in support of education and outreach programs in 2012.

For more information, please click here

Contacts:
Amy Nelson
Public Relations Manager, SPIE
+1 360 685 5478

@SPIEtweets

Copyright © SPIE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Imaging

The stacked color sensor: True colors meet minimization November 16th, 2017

Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs November 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Chip Technology

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Discoveries

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Announcements

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Military

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Industrial

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Events/Classes

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Quantum Dots/Rods

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Photonics/Optics/Lasers

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity November 1st, 2017

Nanoparticles with pulse laser controlled antibacterial properties October 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project