Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SEMATECH Leads Development of Time Waste Measurement Method Standard: Comprehensive and measureable metrics improve semiconductor equipment throughput and increase fab productivity

Abstract:
After several years of industry discussion, development, and proof-of-concept, the SEMI Wait Time Waste Metrics and Methods Task Force — led by SEMATECH and consisting of key industry stakeholders — has successfully developed a method that defines time elements to classify the state of each wafer and wafer batch throughout the manufacturing process. The method, validated by participating SEMATECH and SEMI member companies, is in procedural review for publication as a SEMI standard.

SEMATECH Leads Development of Time Waste Measurement Method Standard: Comprehensive and measureable metrics improve semiconductor equipment throughput and increase fab productivity

Albany, NY | Posted on November 21st, 2013

"The ability to parse cycle time into measurable pieces, or time elements, allows manufacturers to determine how long a particular event takes, and then focus in on opportunities to reduce cycle time," said Jackie Ferrell, Equipment and Factory Productivity project manager at SEMATECH. "This project along with SEMI's standards initiative collaboratively addresses the industry's waste and reduction needs and is one of SEMATECH's many projects that support the need for efficient and automated ways of converting the volumes of data in our fabs to actionable information."

In the semiconductor manufacturing process, there is a significant opportunity to increase equipment utilization and improve overall factory performance. By reducing unnecessary wait-time out of the manufacturing process, fabs will be able to add valuable hours of production time per day - a significant cost savings of potentially $100M for each day of cycle time.

The wait time waste method takes a user-specified time period, breaks it down into contiguous time segments and categorizes each time segment as a type of active or wait time. Factory events and context data are used to delineate the time segments.

The primary standard method provides a common approach to product time measurement that can be compared from one production line to another. The secondary standard method specifies a detailed approach to apply the product time measurement to 300 mm production equipment.

Device makers will be able to use this method to find hidden waste within their equipment and fab operations. Equipment and automated material handling system suppliers will also be able to use this method for equipment characterization and optimization, and work with device makers on analysis and potential solutions. In-house systems and commercial software products and services based on standardized metrics enable fab-wide solutions that will significantly reduce the time and cost to identify waste.

For more information on SEMATECH's Equipment and Factory Productivity Wait Time Waste project, contact Jackie Ferrell at .

####

About SEMATECH
For over 25 years, SEMATECH®, the international consortium of leading semiconductor device, equipment, and materials manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Through our unwavering commitment to foster collaboration across the nanoelectronics industry, we help our members and partners address critical industry transitions, drive technical consensus, pull research into the industry mainstream, improve manufacturing productivity, and reduce risk and time to market. Information about SEMATECH can be found at www.sematech.org. Twitter: www.twitter.com/sematech

About SEMI

SEMI is the global industry association serving the nano- and micro-electronic manufacturing supply chains. Our 2,000 member companies are the engine of the future, enabling smarter, faster and more economical products that improve our lives. Since 1970, SEMI has been committed to helping members grow more profitably, create new markets and meet common industry challenges. SEMI maintains offices in Bangalore, Beijing, Berlin, Brussels, Grenoble, Hsinchu, Moscow, San Jose, Seoul, Shanghai, Singapore, Tokyo, and Washington, D.C. For more information, visit www.semi.org.

For more information, please click here

Contacts:
Erica McGill
SEMATECH
Manager Marketing Communications
O: 518-649-1041

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Standards

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Mini DNA sequencer tests true: The performance of the MinION™ miniature DNA sequencing device has been evaluated by an open, international consortium, and the resulting recommendations and protocols published before peer-review on the F1000Research platform October 15th, 2015

MSS Alliance Launched to Set De Facto Standard for Odor-Sensing Systems October 15th, 2015

ISO Approves 2 Int'l Nanotechnology-Related Standards Proposed by Iran October 2nd, 2015

Chip Technology

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Alliances/Trade associations/Partnerships/Distributorships

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

French Research Team Helps Extend MRI Detection of Diseases & Lower Health-Care Costs: CEA, INSERM and G2ELab Brings Grenoble Region’s Expertise In Advanced Medicine & Magnetism Applications to H2020 IDentIFY Project June 21st, 2016

Research showing why hierarchy exists will aid the development of artificial intelligence June 13th, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic