Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SEMATECH Leads Development of Time Waste Measurement Method Standard: Comprehensive and measureable metrics improve semiconductor equipment throughput and increase fab productivity

Abstract:
After several years of industry discussion, development, and proof-of-concept, the SEMI Wait Time Waste Metrics and Methods Task Force — led by SEMATECH and consisting of key industry stakeholders — has successfully developed a method that defines time elements to classify the state of each wafer and wafer batch throughout the manufacturing process. The method, validated by participating SEMATECH and SEMI member companies, is in procedural review for publication as a SEMI standard.

SEMATECH Leads Development of Time Waste Measurement Method Standard: Comprehensive and measureable metrics improve semiconductor equipment throughput and increase fab productivity

Albany, NY | Posted on November 21st, 2013

"The ability to parse cycle time into measurable pieces, or time elements, allows manufacturers to determine how long a particular event takes, and then focus in on opportunities to reduce cycle time," said Jackie Ferrell, Equipment and Factory Productivity project manager at SEMATECH. "This project along with SEMI's standards initiative collaboratively addresses the industry's waste and reduction needs and is one of SEMATECH's many projects that support the need for efficient and automated ways of converting the volumes of data in our fabs to actionable information."

In the semiconductor manufacturing process, there is a significant opportunity to increase equipment utilization and improve overall factory performance. By reducing unnecessary wait-time out of the manufacturing process, fabs will be able to add valuable hours of production time per day - a significant cost savings of potentially $100M for each day of cycle time.

The wait time waste method takes a user-specified time period, breaks it down into contiguous time segments and categorizes each time segment as a type of active or wait time. Factory events and context data are used to delineate the time segments.

The primary standard method provides a common approach to product time measurement that can be compared from one production line to another. The secondary standard method specifies a detailed approach to apply the product time measurement to 300 mm production equipment.

Device makers will be able to use this method to find hidden waste within their equipment and fab operations. Equipment and automated material handling system suppliers will also be able to use this method for equipment characterization and optimization, and work with device makers on analysis and potential solutions. In-house systems and commercial software products and services based on standardized metrics enable fab-wide solutions that will significantly reduce the time and cost to identify waste.

For more information on SEMATECH's Equipment and Factory Productivity Wait Time Waste project, contact Jackie Ferrell at .

####

About SEMATECH
For over 25 years, SEMATECH®, the international consortium of leading semiconductor device, equipment, and materials manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Through our unwavering commitment to foster collaboration across the nanoelectronics industry, we help our members and partners address critical industry transitions, drive technical consensus, pull research into the industry mainstream, improve manufacturing productivity, and reduce risk and time to market. Information about SEMATECH can be found at www.sematech.org. Twitter: www.twitter.com/sematech

About SEMI

SEMI is the global industry association serving the nano- and micro-electronic manufacturing supply chains. Our 2,000 member companies are the engine of the future, enabling smarter, faster and more economical products that improve our lives. Since 1970, SEMI has been committed to helping members grow more profitably, create new markets and meet common industry challenges. SEMI maintains offices in Bangalore, Beijing, Berlin, Brussels, Grenoble, Hsinchu, Moscow, San Jose, Seoul, Shanghai, Singapore, Tokyo, and Washington, D.C. For more information, visit www.semi.org.

For more information, please click here

Contacts:
Erica McGill
SEMATECH
Manager Marketing Communications
O: 518-649-1041

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Standards/Certifications

NIOSH Releases New Nanotechnology Workplace Design Recommendations March 13th, 2018

SUNY Poly’s Center for Semiconductor Research in Albany Earns World-Class TÜV SÜD AMERICA INC. ISO 9001:2015 Certification: Albany NanoTech Complex Certification Assures Top-Tier Quality in Semiconductor Test Structures; Certification a First for a SUNY Campus March 6th, 2018

Oxford Instruments NanoScience achieves the latest ISO9001:2015 certification March 2nd, 2017

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Chip Technology

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Nanometrics to Announce First Quarter Financial Results on May 1, 2018 April 10th, 2018

Announcements

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Alliances/Trade associations/Partnerships/Distributorships

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project