Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Holistic Cell Design by Berkeley Lab Scientists Leads to High-Performance, Long Cycle-Life Lithium-Sulfur Battery: Battery could find use in mobile applications, and eventually, electric vehicles with 300-mile range

A schematic of a lithium-sulfur battery with SEM photo of silicon-graphene oxide material.
A schematic of a lithium-sulfur battery with SEM photo of silicon-graphene oxide material.

Abstract:
Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated in the laboratory a lithium-sulfur (Li/S) battery that has more than twice the specific energy of lithium-ion batteries, and that lasts for more than 1,500 cycles of charge-discharge with minimal decay of the battery's capacity. This is the longest cycle life reported so far for any lithium-sulfur battery.

Holistic Cell Design by Berkeley Lab Scientists Leads to High-Performance, Long Cycle-Life Lithium-Sulfur Battery: Battery could find use in mobile applications, and eventually, electric vehicles with 300-mile range

Berkeley, CA | Posted on November 20th, 2013

Demand for high-performance batteries for electric and hybrid electric vehicles capable of matching the range and power of the combustion engine encourages scientists to develop new battery chemistries that could deliver more power and energy than lithium-ion batteries, currently the best performing battery chemistry in the marketplace.

For electric vehicles to have a 300-mile range, the battery should provide a cell-level specific energy of 350 to 400 Watt-hours/kilogram (Wh/kg). This would require almost double the specific energy (about 200 Wh/kg) of current lithium-ion batteries. The batteries would also need to have at least 1,000, and preferably 1,500 charge-discharge cycles without showing a noticeable power or energy storage capacity loss.

"Our cells may provide a substantial opportunity for the development of zero-emission vehicles with a driving range similar to that of gasoline vehicles," says Elton Cairns, of the Environmental Energy Technologies Division (EETD) at Berkeley Lab.

The battery initially showed an estimated cell-specific energy of more than 500 Wh/kg and it maintained it at >300 Wh/kg after 1,000 cycles—much higher than that of currently available lithium-ion cells.

The team is now seeking support for the continuing development of the Li/S cell, including higher sulfur utilization, operation under extreme conditions, and scale-up. Partnerships with industry are being sought. The next steps in the development are to further increase the cell energy density, improve cell performance under extreme conditions, and scale up to larger cells.

The results were reported in the journal Nano Letters, in a paper authored by Min-Kyu Song (Molecular Foundry, Berkeley Lab), Yuegang Zhang (Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences) and Cairns (Environmental Energy Technologies Division, Berkeley Lab). The research was funded by the U.S. Department of Energy's Office of Science and a University of California Proof of Concept Award.

####

About Berkeley Lab
A U.S. Department of Energy National Laboratory Operated by the University of California

The Molecular Foundry is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize, and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

For more information, please click here

Contacts:
Allan Chen

510-486-4210

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For a more detailed discussion of the technology, see here:

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Automotive/Transportation

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Going green with nanotechnology December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

One step closer to reality: Devices that convert heat into electricity: Composite material yields 10 times -- or higher -- voltage output January 4th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project