Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ben-Gurion University of the Negev Researchers Develop New Type of Crude Oil Using Carbon Dioxide and Hydrogen: Technology Is Ready for Commercialization and could be Deployed in as Little as Five Years

Abstract:
Ben-Gurion University of the Negev (BGU) researchers have developed an innovative process to convert carbon dioxide and hydrogen into a renewable alternative for crude oil, which could transform fuels used in gas and diesel-powered vehicles and jets.

Ben-Gurion University of the Negev Researchers Develop New Type of Crude Oil Using Carbon Dioxide and Hydrogen: Technology Is Ready for Commercialization and could be Deployed in as Little as Five Years

Beer-Sheva, Israel | Posted on November 20th, 2013

The "green feed" crude oil can be refined into renewable liquid fuels using established technologies and can be transported using existing infrastructure to gas stations. The highly efficient advance is made possible in part using nanomaterials that significantly reduce the amount of energy required in the catalytic process to make the crude oil.

"We can now use zero cost resources, carbon dioxide, water, energy from the sun, and combine them to get real fuels," said BGU's Prof. Moti Hershkowitz, presenting the new renewable fuel process at the Bloomberg Fuel Choices Summit in Tel Aviv on November 13. Carbon dioxide and hydrogen are two of the most common elements available on earth.

"Ethanol (alcohol), biodiesel and/or blends of these fuels with conventional fuels are far from ideal," Hershkowitz explains. "There is a pressing need for a game-changing approach to produce alternative, drop-in, liquid transportation fuels by sustainable, technologically viable and environmentally acceptable emissions processes from abundant, low-cost, renewable materials."

"BGU has filed the patents and we are ready to demonstrate and commercialize it," Hershkowitz says. "Since there are no foreseen technological barriers, the new process could become a reality within five to10 years," he adds.

The BGU crude oil process produces hydrogen from water, which is mixed with carbon dioxide captured from external sources and synthetic gas (syngas). This green feed mixture is placed into a reactor that contains a nano-structured solid catalyst, also developed at BGU, to produce an organic liquid and gas.

Prof. Moti Herskowitz is the Israel Cohen Chair in Chemical Engineering and the vice president and dean of research and development at BGU. He led the team that also includes Prof. Miron Landau, Dr. Roxana Vidruk and others at BGU's Blechner Center for Industrial Catalysis and Process Development.

The Blechner Center, founded in 1995, has the infrastructure and expertise required to deal with a wide variety of challenging topics related to basic and applied aspects of catalysis and catalytic processes. This was accomplished with major funding from various sources that include science foundations, industrial partners and individual donors such as the lateNorbert Blechner. Researchers at the Blechner Center have also developed a novel process for converting vegetable and algae oils to advanced green diesel and jet fuels, as well as a novel process for producing zero-sulfur diesel.

"Ben-Gurion University's Blechner Center has been at the forefront of alternative fuel research and development, working with major American oil and automotive companies for more than 20 years," says Doron Krakow, executive vice president, American Associates, Ben-Gurion University of the Negev. "We applaud these new developments and BGU's focus on giving the world new technologies for more efficient, renewable fuel alternatives."

This project is partially supported by I-SAEF (Israel Strategic Alternative Energy Foundation).

####

About Ben-Gurion University of the Negev
American Associates, Ben-Gurion University of the Negev (AABGU) plays a vital role in sustaining David Ben-Gurion's vision, creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. With some 20,000 students on campuses in Beer-Sheva, Sede Boqer and Eilat in Israel's southern desert, BGU is a university with a conscience, where the highest academic standards are integrated with community involvement, committed to sustainable development of the Negev. AABGU is headquartered in Manhattan and has nine regional offices throughout the United States.

For more information, please click here

Contacts:
Andrew Lavin
A. Lavin Communications
516-944-4486

Copyright © Ben-Gurion University of the Negev

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Energy

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Automotive/Transportation

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Aerospace/Space

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project