Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny ‘Lego’ blocks build Janus nanotubes with potential for new drugs and water purification

Abstract:
Researchers have created tiny protein tubes named after the Roman god Janus which may offer a new way to accurately channel drugs into the body's cells.

Tiny ‘Lego’ blocks build Janus nanotubes with potential for new drugs and water purification

Coventry, UK | Posted on November 14th, 2013

Using a process which they liken to molecular Lego, scientists from the University of Warwick and the University of Sydney have created what they have named ‘Janus nanotubes' - very small tubes with two distinct faces. The study is published in the journal Nature Communications.

They are named after the Roman god Janus who is usually depicted as having two faces, since he looks to the future and the past.

The Janus nanotubes have a tubular structure based on the stacking of cyclic peptides, which provide a tube with a channel of around 1nm (around one millionth of a mm) - the right size to allow small molecules and ions to pass through.

Attached to each of the cyclic peptides are two different types of polymers, which tend to de-mix and form a shell for the tube with two faces - hence the name Janus nanotubes.

The faces provide two remarkable properties - in the solid state, they could be used to make solid state membranes which can act as molecular ‘sieves' to separate liquids and gases one molecule at a time. This property is promising for applications such as water purification, water desalination and gas storage.

In a solution, they assemble in lipids bilayers, the structure that forms the membrane of cells, and they organise themselves to form pores which allow the passage of molecules of precise sizes. In this state they could be used for the development of new drug systems, by controlling the transport of small molecules or ions inside cells.

Sebastien Perrier of the University of Warwick said: "There is an extraordinary amount of activity inside the body to move the right chemicals in the right amounts both into and out of cells.

"Much of this work is done by channel proteins, for example in our nervous system where they modulate electrical signals by gating the flow of ions across the cell membrane.

"As ion channels are a key component of a wide variety of biological process, for example in cardiac, skeletal and muscle contraction, T-cell activation and pancreatic beta-cell insulin release, they are a frequent target in the search for new drugs.

"Our work has created a new type of material - nanotubes - which can be used to replace these channel processes and can be controlled with a much higher level of accuracy than natural channel proteins.

"Through a process of molecular engineering - a bit like molecular Lego - we have assembled the nanotubes from two types of building blocks - cyclic peptides and polymers.

"Janus nanotubes are a versatile platform for the design of exciting materials which have a wide range of application, from membranes - for instance for the purification of water, to therapeutic uses, for the development of new drug systems."

The study, Janus cyclic peptide-polymer nanotubes, was authored by Maarten Danial, Carmen My-Nhi Tran, Philip G. Young, Sebastien Perrier, & Katrina A. Jolliffe

####

For more information, please click here

Contacts:
Anna Blackaby
International Press Officer
Tel: 44 024 7657 5910
Mob: 44 07785 433155

or
Kelly Parkes-Harrison
Senior Press and Communications Manager
Tel: 44 024 7615 0868
Mob: 44 07824 540863


Sebastien Perrier
44 07528422246

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Nanotubes/Buckyballs/Fullerenes

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Discoveries

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Water

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Wood filter removes toxic dye from water April 21st, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project