Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny ‘Lego’ blocks build Janus nanotubes with potential for new drugs and water purification

Abstract:
Researchers have created tiny protein tubes named after the Roman god Janus which may offer a new way to accurately channel drugs into the body's cells.

Tiny ‘Lego’ blocks build Janus nanotubes with potential for new drugs and water purification

Coventry, UK | Posted on November 14th, 2013

Using a process which they liken to molecular Lego, scientists from the University of Warwick and the University of Sydney have created what they have named ‘Janus nanotubes' - very small tubes with two distinct faces. The study is published in the journal Nature Communications.

They are named after the Roman god Janus who is usually depicted as having two faces, since he looks to the future and the past.

The Janus nanotubes have a tubular structure based on the stacking of cyclic peptides, which provide a tube with a channel of around 1nm (around one millionth of a mm) - the right size to allow small molecules and ions to pass through.

Attached to each of the cyclic peptides are two different types of polymers, which tend to de-mix and form a shell for the tube with two faces - hence the name Janus nanotubes.

The faces provide two remarkable properties - in the solid state, they could be used to make solid state membranes which can act as molecular ‘sieves' to separate liquids and gases one molecule at a time. This property is promising for applications such as water purification, water desalination and gas storage.

In a solution, they assemble in lipids bilayers, the structure that forms the membrane of cells, and they organise themselves to form pores which allow the passage of molecules of precise sizes. In this state they could be used for the development of new drug systems, by controlling the transport of small molecules or ions inside cells.

Sebastien Perrier of the University of Warwick said: "There is an extraordinary amount of activity inside the body to move the right chemicals in the right amounts both into and out of cells.

"Much of this work is done by channel proteins, for example in our nervous system where they modulate electrical signals by gating the flow of ions across the cell membrane.

"As ion channels are a key component of a wide variety of biological process, for example in cardiac, skeletal and muscle contraction, T-cell activation and pancreatic beta-cell insulin release, they are a frequent target in the search for new drugs.

"Our work has created a new type of material - nanotubes - which can be used to replace these channel processes and can be controlled with a much higher level of accuracy than natural channel proteins.

"Through a process of molecular engineering - a bit like molecular Lego - we have assembled the nanotubes from two types of building blocks - cyclic peptides and polymers.

"Janus nanotubes are a versatile platform for the design of exciting materials which have a wide range of application, from membranes - for instance for the purification of water, to therapeutic uses, for the development of new drug systems."

The study, Janus cyclic peptide-polymer nanotubes, was authored by Maarten Danial, Carmen My-Nhi Tran, Philip G. Young, Sebastien Perrier, & Katrina A. Jolliffe

####

For more information, please click here

Contacts:
Anna Blackaby
International Press Officer
Tel: 44 024 7657 5910
Mob: 44 07785 433155

or
Kelly Parkes-Harrison
Senior Press and Communications Manager
Tel: 44 024 7615 0868
Mob: 44 07824 540863


Sebastien Perrier
44 07528422246

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanomedicine

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Water

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE