Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny ‘Lego’ blocks build Janus nanotubes with potential for new drugs and water purification

Abstract:
Researchers have created tiny protein tubes named after the Roman god Janus which may offer a new way to accurately channel drugs into the body's cells.

Tiny ‘Lego’ blocks build Janus nanotubes with potential for new drugs and water purification

Coventry, UK | Posted on November 14th, 2013

Using a process which they liken to molecular Lego, scientists from the University of Warwick and the University of Sydney have created what they have named ‘Janus nanotubes' - very small tubes with two distinct faces. The study is published in the journal Nature Communications.

They are named after the Roman god Janus who is usually depicted as having two faces, since he looks to the future and the past.

The Janus nanotubes have a tubular structure based on the stacking of cyclic peptides, which provide a tube with a channel of around 1nm (around one millionth of a mm) - the right size to allow small molecules and ions to pass through.

Attached to each of the cyclic peptides are two different types of polymers, which tend to de-mix and form a shell for the tube with two faces - hence the name Janus nanotubes.

The faces provide two remarkable properties - in the solid state, they could be used to make solid state membranes which can act as molecular ‘sieves' to separate liquids and gases one molecule at a time. This property is promising for applications such as water purification, water desalination and gas storage.

In a solution, they assemble in lipids bilayers, the structure that forms the membrane of cells, and they organise themselves to form pores which allow the passage of molecules of precise sizes. In this state they could be used for the development of new drug systems, by controlling the transport of small molecules or ions inside cells.

Sebastien Perrier of the University of Warwick said: "There is an extraordinary amount of activity inside the body to move the right chemicals in the right amounts both into and out of cells.

"Much of this work is done by channel proteins, for example in our nervous system where they modulate electrical signals by gating the flow of ions across the cell membrane.

"As ion channels are a key component of a wide variety of biological process, for example in cardiac, skeletal and muscle contraction, T-cell activation and pancreatic beta-cell insulin release, they are a frequent target in the search for new drugs.

"Our work has created a new type of material - nanotubes - which can be used to replace these channel processes and can be controlled with a much higher level of accuracy than natural channel proteins.

"Through a process of molecular engineering - a bit like molecular Lego - we have assembled the nanotubes from two types of building blocks - cyclic peptides and polymers.

"Janus nanotubes are a versatile platform for the design of exciting materials which have a wide range of application, from membranes - for instance for the purification of water, to therapeutic uses, for the development of new drug systems."

The study, Janus cyclic peptide-polymer nanotubes, was authored by Maarten Danial, Carmen My-Nhi Tran, Philip G. Young, Sebastien Perrier, & Katrina A. Jolliffe

####

For more information, please click here

Contacts:
Anna Blackaby
International Press Officer
Tel: 44 024 7657 5910
Mob: 44 07785 433155

or
Kelly Parkes-Harrison
Senior Press and Communications Manager
Tel: 44 024 7615 0868
Mob: 44 07824 540863


Sebastien Perrier
44 07528422246

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Nanomedicine

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Discoveries

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Announcements

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Water

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Electricity generated with water, salt and a 3-atoms-thick membrane: EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic