Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano magnets arise at 2-D boundaries: Rice University theory has implications for spintronics

Rice University theorists have discovered magnetic fields (blue) are created at grain boundaries in two-dimensional dichalcogenides. Dislocations along these boundaries, where atoms are thrown out of their regular hexagonal patterns, force electron spins into alignments that favor magnetism.Credit: Zhuhua Zhang/Rice University
Rice University theorists have discovered magnetic fields (blue) are created at grain boundaries in two-dimensional dichalcogenides. Dislocations along these boundaries, where atoms are thrown out of their regular hexagonal patterns, force electron spins into alignments that favor magnetism.

Credit: Zhuhua Zhang/Rice University

Abstract:
When you squeeze atoms, you don't get atom juice. You get magnets.

According to a new theory by Rice University scientists, imperfections in certain two-dimensional materials create the conditions by which nanoscale magnetic fields arise.

Nano magnets arise at 2-D boundaries: Rice University theory has implications for spintronics

Houston, TX | Posted on November 14th, 2013

Calculations by the lab of Rice theoretical physicist Boris Yakobson show these imperfections, called grain boundaries, in two-dimensional semiconducting materials known as dichalcogenides can be magnetic. This may lead to new strategies for the growing field of spintronics, which takes advantage of the intrinsic spin of electrons and their associated magnetic fields for electronic and computing devices.

The discovery by Yakobson, lead author Zhuhua Zhang and their colleagues was reported online this week in the American Chemical Society journal ACS Nano.

Dichalcogenides are hybrids that combine transition metal and chalcogen atoms, which include sulfur, selenium and tellurium. The Yakobson group focused on semiconducting molybdenum disulfide (MDS) that, like atom-thick graphene, can be grown via chemical vapor deposition (CVD), among other methods. In a CVD furnace, atoms arrange themselves around a catalyst seed into familiar hexagonal patterns; however, in the case of MDS, sulfur atoms in the lattice alternately float above and below the layer of molybdenum.

When two growing blooms meet, they're highly unlikely to line up, so the atoms find a way to connect along the border, or grain boundary. Instead of regular hexagons, the atoms are forced to find equilibrium by forming adjoining rings known as dislocations, with either five-plus-seven nodes or four-plus-eight nodes.

In graphene, which is generally considered the strongest material on Earth, these dislocations are weak points. But in MDS or other dichalcogenides, they have unique properties.

"It doesn't matter how you grow them," Yakobson said. "These misoriented areas eventually collide, and that's where you find topological defects. It turns out that - and I like this mechanistic metaphor - they squeeze magnetism out of nonmagnetic material."

In previous work, Yakobson found dislocations create atom-width conducting lines and dreidel-shaped polyhedra in MDS. This time, the team dug deeper to find that dislocation cores turn magnetic where they force spinning electrons to align in ways that don't cancel each other out, as they do in a flawless lattice. The strength of the magnets depends on the angle of the boundary and rises with the number of dislocations necessary to keep the material energetically stable.

"Every electron has charge and spin, both of which can carry information," Zhang said. "But in conventional transistors, we only exploit the charge, as in field-effect transistors. For newly emerged spintronic devices, we need to control both charge and spin for enhanced efficiency and enriched functions."

"Our work suggests a new degree of freedom -- a new controlling knob -- for electronics that use MDS," Yakobson said. "The ability to control the magnetic properties of this 2-D material makes it superior to graphene in certain respects."

He said the dislocation rings of four and eight atoms are not energetically favored in graphene and unlikely to occur there. But in the materials that mix two elements, certain grain boundary configurations will very likely create conditions where similar elements, wishing to avoid contact with each other, will instead bond with their chemical opposites.

"The system avoids mono-elemental bonds," Yakobson said. "The chemistry doesn't like it, so four-eight offers a benefit." Those defects are also the strongest sources of magnetism at certain grain boundary angles, he said; at some angles, the boundaries become ferromagnetic.

The team proved its theory through computer models designed to isolate and control the effects of the nanoribbons' edges and grain boundary dipoles that could skew the results. They also determined that grain boundary angles between 13 and 32 degrees force a progressive overlap between the dislocations' spins. With sufficient overlap, the spins become magnetically coupled and broaden into electronic bands that support spin-polarized charge transport along the boundary.

Now, Yakobson said, "The challenge is to find a way to experimentally detect these things. It's quite difficult to resolve it at this spatial resolution, especially when some of the experimental methods, like electron beams, would destroy the material."

Co-authors of the paper are Rice postdoctoral researcher Xiaolong Zou and Vincent Crespi, distinguished professor of physics, materials science and engineering, and chemistry at The Pennsylvania State University. Yakobson is Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science, a professor of chemistry and a member of the Richard E. Smalley Institute for Nanoscale Science and Technology.

A U.S. Army Research Office Multidiscipline University Research Initiative grant, the National Science Foundation and the Robert Welch Foundation supported the research. Computations were performed on the Data Analysis and Visualization Cyberinfrastructure supercomputer administered by Rice's Ken Kennedy Institute for Information Technology.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Yakobson Research Group:

Related News Press

News and information

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Spintronics

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Spin lifetime anisotropy of graphene is much weaker than previously reported May 10th, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Quantum Computing

Dartmouth team creates new method to control quantum systems May 24th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Spin lifetime anisotropy of graphene is much weaker than previously reported May 10th, 2016

Discoveries

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Announcements

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Military

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic